
Multi-stage heterogeneous ensemble meta-learning

with hands-off user-interface and stand-alone

prediction using principal components regression:

The R package EnsemblePCReg

Mansour T.A. Sharabiani
School of Public Health
Imperial College London

Alireza S. Mahani
Scientific Computing Group

Sentrana Inc.

Abstract

Despite the fact that ensemble meta-learning of a heterogeneous collection of base
learners is an effective means to reduce the generalization error in predictive models,
several factors have impeded a broad adoption of such techniques among practitioners.
These factors include an intractable number of choices of base learners and their tuning
parameters, complex methodology required for integration of base learners, the ensuing
complexity of software needed to support stand-alone prediction, and significant CPU and
memory consumption of heterogeneous ensemble meta-learning techniques. The R pack-
age EnsemblePCReg overcomes the above barriers by combining several features. Sensible
base-learner parameter grids provide a hands-off API for non-experts while allowing expert
users to exert control by overriding default settings. Sophisticated ensemble generation
and integration methods, combining stacked generalization and principal components re-
gression, offer favorable generalization performance. Finally, computational optimizations
such as advanded thread scheduling for improved parallelization scaling and file methods
for relieving memory consumption during training and prediction, significantly increase
the range of data sizes that can be handled on personal computers. In combining these
features, EnsemblePCReg significantly lowers the barrier for practitioners to apply het-
erogeneous ensemble meta-learning techniques to their everyday regression problems.

Keywords: heterogeneous ensemble learning, ensemble meta-learning, stacked generalization,
principal components regression.

1. Introduction

While ensemble learning of homogeneous base learners such as decision trees is widely used
in algorithms such as random forests (RF) (Breiman 2001) and gradient boosting machines
(GBM) (Friedman 2001), heterogeneous ensemble meta-learning (HEML) – i.e., combining
base learners of different types into a single meta-learner – has not yet achieved broad, real-
world adoption (Holiday 2012), and applications of HEML techniques such as stacked gen-
eralization (Wolpert 1992) have been mostly limited to data science competitions (Bell and
Koren 2007). This is unfortunate because – by virtue of combining diverse and specialized
learners of different types – HEML achieves a central goal of ensemble learning, i.e., weak

2 Heterogeneous ensemble meta-learning using EnsemblePCReg

correlation among strong constituents (Webb et al. 2004).

In applying HEML techniques to real-world problems, practitioners face several challenges:

1. Ensemble generation: First, one must choose among the myriad base learners avail-
able. For example, the R package caret (Kuhn et al. 2015) exposes 213 base learners in
its API, as of version 6.0-62! Using all these base learners in a HEML algorithm can
be not only computationally time-consuming but also methodologically questionable,
since many of these base learners are slight variants of each other, with high correla-
tion among their predictions. In addition, for each base learner the user must select its
tuning parameter(s). Once we step beyond simple base learners such as GLM models,
most non-parametric algorithms include numerous tuning parameters. For example,
the Bayesian Additive Regression Trees (BART) (Chipman et al. 2010) implementa-
tion in BayesTree (Chipman and McCulloch 2014) contains at least 7 non-trivial tuning
parameters: sigdf, sigquant, k, power, base, ntree, ndpost. A brute-force, ex-
haustive grid search – e.g., using a cross-validated performance metric – quickly becomes
computationally infeasible, and choosing a single set of default values provided in the
package is by no means an optimal decision.

2. Ensemble integration: Combining base learner predictions into a single ensemble pre-
diction is another challenge in HEML algorithms. While a simple average works well
for homogeneous ensemble learners such as RF or BART, same is not true for HEML
algorithms which combine different base learners with potentially very different perfor-
mance profiles. Naively applying a second-stage model (meta-learner) to base learners
that are trained on the full training set is also dangerous because it rewards overfit
learners that have excellent within-sample performance, at the expense of poor out-
of-sample accuracy. Furthermore, as more base learners are added to the ensemble,
the inevitable multicollinearity of base-learner predictions must be properly handled by
the meta-learner, requiring some form of regularization or shrinkage, whose parameter
must be selected. The need for sophisticated ensemble integration techniques in HEML,
while maximizing data utilization and avoiding data contamination, creates significant
methodological challenges.

3. Stand-alone prediction: A key shortcoming of many HEML-based models emerging from
data science competitions has been their inability to produce stand-alone predictions:
The price paid for the highly convoluted methodologies used in such models is that
the ensemble model must be re-trained each time a new prediction is needed. This
lengthy process, while not a serious problem during competitions where (unlabeled)
test set is often provided to the participants at the outset, makes such models unfit for
emerging applications such as cloud-based analytics services, or real-time recommender
engines (Johnston 2012). Furthermore, the need to re-train for each new prediction
means results cannot be reproduced by researchers due to the stochasticity of training
process in many base learners.

4. CPU and memory consumption: Finally, HEML algorithms are computationally de-
manding, thanks to their need for training a large number of base learners, each of
which can itself be an ensemble learner. This means not only high CPU usage, but also
high memory consumption, especially if using tree-based base learners such as RF. It is
easy for HEML algorithms to require tens of Gigabytes of memory, even for small data

Mansour T.A. Sharabiani, Alireza S. Mahani 3

sizes, thus exceeding the resources of many PC’s and restricting their use to powerful
servers and/or distributed clusters. Scheduling of base-learner training jobs on avail-
able threads is another complexity, thanks to the highly uneven training times across
different base-learner types.

These challenges combine to put HEML techniques squarely within the niche of machine
learning and high-performance computing experts, require allocation of significant computing
resources, and incur significant delays for modeling projects. For many real-world applica-
tions with serious resource and time constraints, such requirements render HEML models
impractical.

Such difficulties are reflected in the open-source software landscape. While numerous R pack-
ages exist for homogeneous ensemble learning, including randomForest (Liaw and Wiener
2002), gbm (Ridgeway 2015), BayesTree (Chipman and McCulloch 2014), adabag (Alfaro
et al. 2013), mboost (Hothorn et al. 2016) and subsemble (LeDell et al. 2014) among many
others, yet – to our knowledge – there are few open-source software options available for
HEML: the R packages caretEnsemble (Mayer and Knowles 2015) and SuperLearner (Polley
and van der Laan 2014), and the C++ library ELF (Jahrer 2010). While these packages have
indeed reduced the barrier to using HEML by practitioners, yet there remains a significant
gap between HEML and homogeneous ensemble learners in terms of broad usability.

EnsemblePCReg offers a unique set of features for overcoming the above-mentioned barriers to
building HEML models, thus significantly broadening the reach and utility of such techniques
for practitioners:

1. Easy-to-use API: In EnsemblePCReg, training a model is as simple as the standard
single-line call used in many base learners implemented in various R packages. Similarly,
prediction, diagnostics and visualization are all one-line API calls. Despite using a
sophisticated methodology (see Section 2), prediction can be done without re-training
the model, thus allowing EnsemblePCReg to be used for on-demand prediction, and
making the results fully reproducible.

2. Sophisticated ensemble generation and integration: EnsemblePCReg combines two ad-
vanced techniques for ensemble generation (stacked generalization (Wolpert 1992)) and
ensemble integration (rotating-partition principal components regression (Merz and Paz-
zani 1999)) into a two-stage process, which we refer to as the ‘double-rotating-partition’
– or DRP – framework. The result is maximal use of data while avoiding contamination
and overfitting, thus leading to superior generalization performance, i.e., low error on
test data.

3. Computational optimizations: Multicore parallelization using advanced thread schedul-
ing policies during both training and prediction, along with memory optimization via
file methods for saving/loading base learner training objects to/from disk, allow users
to efficiently build ensemble models on PC’s with limited processing power and memory.

The rest of this paper is organized as follows. In Section 2 we motivate and describe the
ensemble generation and integration stages used in EnsemblePCReg. In Section 3 we present
the computational optimization techniques utilized in EnsemblePCReg for efficient CPU and
RAM utilization. Section 4 acts as a tutorial by presenting several examples that illustrate key

4 Heterogeneous ensemble meta-learning using EnsemblePCReg

features and use-cases of EnsemblePCReg. In Section 5 we further discuss several important
topics raised in the paper, and offer concluding remarks.

2. Ensemble meta-learning in EnsemblePCReg

Ensemble learning consists of three stages (Mendes-Moreira et al. 2012): generation, pruning
and integration. In ensemble generation, many models are generated using different base
learners, tuning parameters, or data subsets. During pruning, a subset of these models are
eliminated and the remainder is passed on to the integration stage, where they are combined
using the meta-learner to form the final model. In EnsemblePCReg, the regularization effect
of the PCA component of the integration algorithm (Section 2.2) allows us to absorb the
pruning stage into the integration stage.

2.1. Ensemble generation using SG

The ideal outcome in ensemble generation is a collection of diverse – i.e., uncorrelated – and ac-
curate base learners. Ensemble generation techniques broadly fall into two categories (Mendes-
Moreira et al. 2012): 1) data manipulation techniques such as subsampling of training cases,
random (feature) subspace (Ho 1998), and output smearing (Breiman 2000) among others;
and 2) modeling process manipulation techniques such as changing tuning parameters and
learning algorithm, and post-bagging (Jorge and Azevedo 2005). EnsemblePCReg uses ele-
ments from each category by combining models produced with different base learners, tuning
parameters, and data partitions. Appendix A contains a list of base learners and their default
parameter grids used during ensemble generation in EnsemblePCReg. Below, we focus on
motivating and describing our data partitioning strategy.

In ensemble integration, the predictions of base learners – trained during the ensemble gener-
ation stage – are used as predictors in the meta-learning process. If we use the same data set
for training both the base learners and the meta-learner in a naive manner, this can lead the
meta-learner to favor base learners that overfit to the training set – i.e., those base learners
whose within-sample predictions are the closest to the observed values – at the expense of
out-of-sample performance. We refer to this as ‘data contamination’, suggesting that the data
(or process) used for base-learner training has contaminated the data (or process) used by
the meta-learner (Figure 1a).

A simple way to avoid data contamination is to split the training set into two subsets, using
one for base-learner training and the other for meta-learner training (Figure 1b). Such simple
setups, however, do not utilize the data efficiently, which can be especially problematic for
small data sets. An improvement is to reverse the subset labels and repeat the process, using
an average of the resulting two models as the final ensemble model (Figure 1c).

Wolpert (1992) proposed ‘stacked generalization’ (SG) to overcome data contamination. In
SG, data is partitioned into – often equal or nearly-equal – subsets or folds. For each fold,
base learners are trained on its ‘complement’, i.e. all cases not present in that fold, and
predictions of the complement subset for the cases in the subset are collected. After this is
repeated for all folds, the out-of-sample predictions are assembled to form a data set covering
all original cases, and the resulting matrix is used as the feature matrix for meta-learning.
This is illustrated – for two partitions – in Figure 1d. As Wolpert pointed out, cross-validated
(CV) selection of a single base learner can be considered a special case of SG, where the meta-

Mansour T.A. Sharabiani, Alireza S. Mahani 5

Figure 1: Progression of data-splitting strategies for minimizing data contamination while
maximizing data utilization: a) Within-sample predictions of base learners (bl) are provided
as predictors into the ensemble integration (EN) stage, causing ‘contamination’; b) A simple
scheme to avoid contamination, where half of data is used for training base learners and the
other half is used for training the ensemble learner; c) Improvement upon (b), where the roles
of two data subsets are reversed, producing two ensemble models which must be combined
(e.g., by averaging); d) Rotating-Partition (RP) strategy, inspired by cross-validation, where
out-of-sample base learner predictions are assembled into a full prediction for entire training
set, followed by ensemble training of a single model.

learner simply selects the base learner corresponding to the meta-feature with smallest error.
However, we have labeled the term ‘rotating-partition’ to described this pattern in order to
clearly differentiate it from CV selection.

2.2. Ensemble integration using PCR*

In principal, any base learner – including non-parametric or ensemble learners – can be used
as a meta-learner during ensemble integration. However, weighted averaging of base learner
predictions is generally more robust:

fE(x) =
K∑
i=1

hi(x) × fi(x), (1)

where x is the feature vector, fi(.) is the prediction function for base learner i, hi(.) is
the weighting function for base learner i, and fE(.) is the resulting prediction function for
the ensemble meta-learner. Weighted-average models fall under constant and non-constant

6 Heterogeneous ensemble meta-learning using EnsemblePCReg

(dynamic) weight categories, with constant weights being more common, and the method
used in EnsemblePCReg.

Any ensemble integration method must deal with the fact that base learner predictions can
be strongly correlated, for two reasons: 1) Same base learner, trained with different tuning
parameters, tends to produce somewhat similar models and predictions, and 2) Accurate base
learners – by definition – are all correlated with the response variable, and hence with each
other. Collinearity of base learners tends to become more pronounced as we increase the
number of base learners, especially for small data sets, and can lead to an ensemble model
that is overfit to the training data.

Many techniques exist for dealing with collinear predictors (Hastie et al. 2009), including
forward-backward variable selection, regularized regression such as ridge (L2) and Lasso (L1),
and Principal Components Regression (PCR). Regularized regression and PCR are similar
in that they each have a tuning parameter that controls the degree of shrinkage applied to
the coefficients of the resulting linear regression model. In ridge/Lasso, the tuning parameter
controls the relative importance of the weight penalty term in the error function, while in
PCR the tuning parameter is the number of principal components (ordered by eigenvalue)
used in regression. While regularized regression has received more attention as an ensemble
integration technique, PCR has the slight advantage that the tuning parameter has a natural
grid, thus removing the need for careful grid construction to ensure that the optimal value is
an interior point of the grid and adjusting computation time through grid resolution.

It must be noted that, as discussed in (Hastie et al. 2009, Section 3.4.1), there is a close
connection between ridge regression and PCR. While PCR projects model predictions into
the subspace spanned by the eigenvectors corresponding to the largest eigenvalues of the
covariance matrix (XTX):

Xβpcr =

P∑
j=1

uju
T
j y, (2)

(where P denotes the number of principal components kept for regression) ridge regression
applies a soft version of the PCR by weighting the contribution of each eigenvector (u) with
inverse proportion to its eigenvalue (dj):

Xβridge =

J∑
j=1

uj

d2j
d2j + λ

uT
j y, (3)

where λ is the regularization (or shrinkage) parameter in ridge regression. While this paper
focuses on EnsemblePCReg, interested users can refer to EnsemblePenReg (Sharabiani and
Mahani 2014) for a penalized-regression version of this EnsemblePCReg.

The number of components used in PCR is selected using the same RP pattern seen in SG
(Section 2.1). Details are described in Merz and Pazzani (1999). We follow their terminology
and refer to the PCR method embedded in the RP pattern as PCR*.

2.3. Combining SG and PCR*: The DRP framework

We discussed data contamination and multi-collinearity as two key challenges in heterogeneous
ensemble meta-learning, and presented two techniques used in EsnemblePCReg for addressing
these problems: SG and PCR*. EnsemblePCReg combines these techniques into a single

Mansour T.A. Sharabiani, Alireza S. Mahani 7

learner that produces superior predictive performance compared to using each technique in
isolation. The result is called the Double-Rotating-Partition (DRP) framework, referring
to application of the rotating-partition (RP) pattern twice in succession, once for ensemble
generartion, and once for ensemble integration. Next we present empirical evidence supporting
the advantage of DRP over simpler alternatives, i.e., using RP only for generation (SG) or
integration (PCR*) stages.

We used 22 publicly-available data sets, listed in Appendix C. Performance comparison of
DRP against SG and PCR* is based on their out-of-sample performance on 112 random 70-
30 splits of each data set into training and test sets. Default settings of epcreg were used.
‘Generalization improvement’ is defined as the ratio of error in the test set for either of the
alternative models (SG and PCR*), divided by error of the DRP model. This number is
calculated for each of the 112 partitions within each data set. Figure 2 shows a summary of
results, plotting mean +/- 2 se of the metric for each data set. Data sets are sorted from
left to right in order of increasing size, i.e., number of observations (matching the appendix
table). We observe the following:

1. Using the RP pattern for generating base learners (DRP vs. PCR*) offers significant
improvement across all data sizes.

2. Using the RP pattern during integration – to select the number of PC’s in PCR – (DRP
vs. SG) offers improvement for small data sets, and little to no improvement for large
data sets.

3. DRP is rarely significantly worse than either alternative.

Given that embedding algorithms such as PCR or regularized regression in RP does not add
significant time to overall training time – since base learner training consumes the majority
of training time – it is a safe strategy to use DRP across all data sizes.

It must be noted that, the objective of this benchmarking test was not to prove that ensemble
meta-learning is better than any individual base learner, though this will be briefly discussed
in Section 4.1.

The price we pay for methodological superiority of the DRP framework is its complexity, and
thus a modular implementation of the DRP framework – with train and predict functions
decoupled – is highly non-trivial. Appendix B describes the approach used in EnsemblePCReg
for composing the DRP framework from simpler components.

3. Computational optimizations in EnsemblePCReg

In addition to utilizing the parallelizable nature of training and predicting on base learners,
EnsemblePCReg has two additional optimization features: advanced thread scheduling for
improved parallelization speedup, and file methods for reducing RAM pressure. We discuss
these two optimization techniques in this section, and provide examples of their usage in
Section 4.3.

3.1. Advanced thread scheduling

8 Heterogeneous ensemble meta-learning using EnsemblePCReg

●

●

●

● ● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20

1.
0

1.
2

1.
4

1.
6

1.
8

data set

ge
ne

ra
liz

at
io

n
im

pr
ov

em
en

t

DRP vs Naive Generation

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●
● ● ●

● ●

5 10 15 20

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

data set

ge
ne

ra
liz

at
io

n
im

pr
ov

em
en

t

DRP vs Naive Integration

Figure 2: Improvement in generalization (out-of-sample) performance of DRP framework
(using PCR for integration stage) compared to two alternative methods, for each of the 22
data sets in Table 2. Left: DRP is compared to an ensemble model that does not use the
RP pattern for training the base learners, but is otherwise identical to DRP (Naive-BL).
Right: DRP is compared to an ensemble model that does not use RP pattern for selecting
the number of PC’s in PCR-based integration (i.e. always using the maximum number of
PC’s which is equivalent to standard linear regression), but is otherwise identical to DRP
(Naive-Ens). Each point is based on 112 random, 70-30 splits of data. Vertical bars indicate
2 times standard error.

Thread scheduling describes the process – dictated by a combination of the application and
the operating system – of assigning parallelizable tasks to concurrent threads. In doing so,
we seek the dual objectives of load balancing and parallel overhead minimization (Chandra
2001). Load balancing is an attempt to distribute tasks across threads such that total task
durations are as even as possible. Otherwise, a weak link – i.e., a queue of tasks with long
total execution time – will become the bottleneck and reduce parallelization speedup. At the
same time, we would like to minimize the need for threads to synchronize their actions since
this also imposes a performance hit.

There are two general categories of thread scheduling policies: static (or pre-scheduled) and
dynamic. In static scheduling, tasks are assigned to threads before entering the parallel region,
while in dynamic scheduling tasks are put in a single queue and grabbed by threads as they
finish previous tasks. Compared to dynamic policies, static scheduling imposes lower thread
synchronization costs since threads do not need to coordinate their action while fetching and

Mansour T.A. Sharabiani, Alireza S. Mahani 9

executing tasks. However, if static task assigment is uneven, it can lead to load imbalance.
Static vs. dynamic scheduling can be controlled via the preschedule flag in epcreg function.
For both static and dynamic scheduling, EnsemblePCReg offers three flavors, accessed via
the schedule.method argument: 1) as.is: In dynamic scheduling, this option leaves the
job queue unchanged. In static scheduling, jobs are assigned to threads in a round-robin
fashion; 2) random: This can be considered similar to as.is, but jobs are first shuffled
randomly; 3) task.length: In dynamic scheduling, jobs are first sorted in decreasing order
of expected duration (using the task.length argument), while in static scheduling, a simple
but effective algorithm is used to assign jobs to threads, also based on expected durations,
to achieve good load balance. (Interested readers can examine the source code for function
Regression.CV.Batch.Fit in the file baselearners.R, from R package EnsembleBase, which
contains the actual implementation of thread scheduling policies described above.)

Figure 3 compares the performance of various combinations of preschedule and schedule.method

flags in parallel training of base learners for the servo data set (available in EnsembleBase),
using 10 partitions of data for ensemble generation (npart = 10). We see that all three dy-
namic methods scale poorly as we increase the number of cores. This is a reflection of the
small data size (167 observations), leading to small job durations, which in turn makes thread
synchronization overhead quite comparable to them. Performance of as.is method in static
scheduling is quite erratic, depending on the specific distribution of long tasks across threads.
The random method performs better, only surpassed by the task.length method. We expect
that, as the number of base learner instances is increased (e.g. by increasing npart or number
of configurations per base learner), the performance of random method will approach that of
task.length. Based on the above results, we have selected static scheduling with random

method as default for both train and predict stages. See Section 4.3 for usage examples.

3.2. Memory optimization

Some base learners, especially ensemble, tree-based algorithms such as RF and GBM, produce
large training objects. Multiplied by number of configurations per partition times number of
partitions times number of folds per partition used in EnsemblePCReg (default: 16 x 1 x 5
= 80), this can lead to very large training objects produced by epcreg. For example, even
for a small data set of 337 observations and 16 features, using npart=50 with default base
learners and configurations produces a ∼15GB object, approaching/exceeding the total RAM
available on many PC’s. A particular tuning parameter that contributes linearly towards
estimation object size for forest learners such as RF, GBM and BART is the number of trees
in the forest.

To overcome this RAM bottleneck, we have provided facilities for saving/loading epcreg

objects to/from disk, during model training and prediction. This feature is activated by the
file.method flag. Behind the scene, the software saves each base learner training object to a
temporary file (after training for that instance is finished), removes the object from memory,
and calls R’s garbage collector to reclaim that space. During prediction, training objects are
loaded from the temporary files as needed to produce base learner predictions. Also, special
functions epcreg.save and epcreg.load are provided to save/load epcreg objects to/from
permanent files for intersession continuity. In the above example, using file methods reduces
the R object size corresponding to the trained model by a factor of 40x. See Section 4.4.

It must be noted that, executing training and prediction in parallel mode partially negates

10 Heterogeneous ensemble meta-learning using EnsemblePCReg

5 10 15

0
5

10
15

number of cores

sp
ee

du
p

●

●

●
●

●
● ● ● ● ●

● ● ● ●
●

●

● dynamic − as.is
dynamic − random
dynamic − task.length
static − as.is
static − random
static − task.length
ideal

Figure 3: Impact of scheduling policy on scaling behavior of ensemble training as a function
of number of parallel cores used. ‘Dynamic’ corresponds to preschedule flag set to FALSE.

Mansour T.A. Sharabiani, Alireza S. Mahani 11

the memory savings offered by the file method, since at any time as many base learner objects
could be loaded into RAM as the number of parallel threads.

4. Using EnsemblePCReg

The package consists of two major components: a high-level user API, and a low-level de-
veloper API. In this tutorial we focus on the user API as it is more stable and the primary
concern for the majority of users of EnsemblePCReg. The user API consists of the following
components:

1. EML training (epcreg) and prediction (predict.epcreg)

2. Configuring base learners (ecpreg.baselearner.control and make.configs) and en-
semble meta-learner (epcreg.integrator.control)

3. Diagnostics (summary.epcreg) and visualization (plot.epcreg)

4. Disk write I/O (epcreg.save and read (epcreg.load)

All these functions are quite intuitive, and their use is illustrated via examples in the remainder
of this section.

4.1. Example 1: Using default settings

First, we load the package and a sample data set, and split it randomly into training and
prediction sets.

R> library("EnsemblePCReg")

R> data(servo)

R> my.seed <- 0

R> set.seed(my.seed)

R> myformula <- class ~ motor + screw + pgain + vgain

R> perc.train <- 0.7

R> index.train <- sample(1:nrow(servo), size = round(perc.train*nrow(servo)))

R> data.train <- servo[index.train,]

R> data.predict <- servo[-index.train,]

Training the ensemble regression model is as simple as a one-line call to epcreg function:

R> est <- epcreg(myformula, data.train, print.level = 0)

Performance of base learners, as well as ensemble integrator step can be easily plotted (Fig-
ure 4):

R> plot(est)

The horizontal dotted line in the left panel indicates the final ensemble error, and corresponds
to the bottom of the curve in the right panel. A few observations are worth mentioning:

12 Heterogeneous ensemble meta-learning using EnsemblePCReg

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80

0.
5

1.
0

1.
5

2.
0

2.
5

Base Learner Performance

Base Learner Instances

C
V

 E
rr

or

● NNET
RF
SVM
GBM
KNN

0 20 40 60 80

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

Integrator Performance

Number of Principal Components

C
V

 E
rr

or

Figure 4: Performance of base learners (left) and PCR integrator (right), corresponding to
the example discussed in Section 4.1.

Mansour T.A. Sharabiani, Alireza S. Mahani 13

1. As a whole, among the 5 base learners used, the two ensemble methods, i.e., random
forest (RF) and gradient boosting machines (GBM), have the best cross-validated per-
formance, compared to the 3 non-ensemble techniques, i.e., neural networks (NNET),
support vector machines (SVM) and k-nearest neighbors (KNN). This confirms our
premise that ensemble methods are generally superior in terms of prediction accuracy.

2. Within each base learner, CV performance of different sets of tuning parameters have
significant spreads. This is especially true for NNET.

3. The PCR integrator (ensemble) outperforms all individual base learners – including
ensemble base learners, RF and GBM – by a significant margin. However, looking at
the plot of CV error vs. number of PC components (right panel), there could be cause
for concern due to the sharp drop in error around the point of minimum error; this
could indicate a small-sample fluke.

We can use the 30% hold-out sample to validate whether the superior performance of the
ensemble method carries to data sets unseen by the algorithm. As shown in Figure 5, this
is indeed the case. Overall, we see good correlation between CV and validation errors across
base learners, although for instances with smaller errors, the correlation weakens.

The ensemble model, est, can be easily used for prediction on new data sets, using the usual
R syntax:

R> newpred <- predict(est, data.predict)

R> cat("first 5 predictions:", head(newpred, 5), "\n")

first 5 predictions: 5.800048 0.675943 3.605809 0.7802629 0.6644396

The ability to re-use a trained ensemble model for new predictions, rather than requiring the
prediction set to be available during training, allows for ensemble models to be trained, stored,
and applied on demand, e.g., in response to streaming data, and without the significant delay
imposed by the training process.

Overall, we see that EnsemblePCReg has successfully encapsulated and hidden all the com-
lexities involved in training and prediction for ensemble models, exposing a familiar and
easy-to-use API for practitioners.

4.2. Example 2: Overriding default settings

Experienced users can exert more control over the model, including selection of base learners
and their configuration grids, number of partitions, and number of folds per partition. These
can be done via the utility function epcreg.baselearner.control, as illustrated next.

Looking at Fig. 4, we may consider excluding neural networks (NNET) from the ensemble,
since its 16 instances have generally high CV errors. To test this hypothesis, we perform a
comparison of ensemble performance, with and without NNET. We begin by creating two
base learner control arguments, taking care to move NNET to the end of the pack so as to
generate identical models for other base learners by fixing the random seed before each run:

R> baselearners.1 <- c("rf", "svm", "gbm", "knn", "nnet")

R> control.1 <- epcreg.baselearner.control(baselearners = baselearners.1)

14 Heterogeneous ensemble meta-learning using EnsemblePCReg

●

0.5 1.0 1.5 2.0 2.5

1.
0

1.
5

2.
0

CV error

va
lid

at
io

n
er

ro
r

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● NNET
RF
SVM
GBM
KNN
ensemble

Figure 5: Comparison of CV error (70% of data) against validation error (30% of data) for
base learners as well as ensemble model trained on servo data set.

Mansour T.A. Sharabiani, Alireza S. Mahani 15

R> baselearners.2 <- c("rf", "svm", "gbm", "knn")

R> control.2 <- epcreg.baselearner.control(baselearners = baselearners.2)

Next, we train ensemble models under both settings:

R> set.seed(my.seed)

R> est.1 <- epcreg(myformula, data.train, print.level = 0,

+ baselearner.control = control.1)

R> set.seed(my.seed)

R> est.2 <- epcreg(myformula, data.train, print.level = 0,

+ baselearner.control = control.2)

and summarize them:

R> summary(est.1)

number of base learner instances: 96

maximum number of PC's considered: 84

optimal number of PC's: 11

minimum error: 0.6543877

R> summary(est.2)

number of base learner instances: 80

maximum number of PC's considered: 72

optimal number of PC's: 49

minimum error: 0.6325347

We see that the CV error is slightly lower after removing NNET. Validation errors reveal an
even more pronounced error improvement:

R> pcr.newerror.1 <- rmse.error(predict(est.1, data.predict), data.predict$class)

R> pcr.newerror.2 <- rmse.error(predict(est.2, data.predict), data.predict$class)

R> cat("validation error - all learners:", pcr.newerror.1, "\n")

validation error - all learners: 0.6150482

R> cat("validation error - all learners minus nnet:", pcr.newerror.2, "\n")

validation error - all learners minus nnet: 0.4776699

We see that, in this case, removing the bad-performing base learners from the ensemble
meta-learner helped the out-of-sample performance, but this result cannot be relied upon
without more extensive testing, especially due to the very small data size which can cause
severe random fluctuations in performance depending on how the RNG is seeded. Weak
learners can indeed improve ensemble performance if they are relatively uncorrelated with

16 Heterogeneous ensemble meta-learning using EnsemblePCReg

other, stronger learners. A reliable conclusion can only be drawn after mosr extensive testing
of this and several other data sets.

Configuration grids for base learners can also be adjusted by overriding the default baselearner.configs
argument passed to epcreg.baselearner.control. The make.configs collection of utility
functions can be used for this purpose. For example, to change the n.trees parameter values
in GBM (from their default value of 1000,2000) to 500, 750, we do:

R> my.configs.gbm <- make.configs(baselearner = "gbm"

+ , config.df = expand.grid(

+ n.trees=c(500, 750)

+ , interaction.depth=c(3,4)

+ , shrinkage=c(0.001,0.01,0.1,0.5)

+ , bag.fraction=0.5))

R> my.configs <- c(make.configs(baselearner = c("nnet", "rf", "svm", "knn")),

+ my.configs.gbm)

R> my.control <- epcreg.baselearner.control(baselearner.configs = my.configs)

Unless users have a solid reason to change default configuration grids, we recommend against
doing so, as these default values have been created based on empirical results and literature
review in order to induce sufficient diversity while maintaining a high likelihood of the optimal
set of parameters being an interior point on the grid for each base learner.

Perhaps a more rewarding override of default settings is to increase the number of partitions
for base learners (npart argument passed to function epcreg.baselearner.control), from
the default value of 1. This can even out random effects, especially in small data sets, and
result in smoother, more reliable, PCR curves to be used in the integration step. This larger
ensemble model can be easily estimated and visualized as follows:

R> control.npart <- epcreg.baselearner.control(npart = 10)

R> set.seed(my.seed)

R> t.npart <- proc.time()[3]

R> est.npart <- epcreg(myformula, data.train, print.level = 0,

+ baselearner.control = control.npart)

R> t.npart <- proc.time()[3] - t.npart

R> cat("training time:", t.npart, "\n")

training time: 360.69

As we see in Figure 6, integrator curve is somewhat smoother. It also appears that cross-
validation best selection of a single base learner instance achieves lower error than the en-
semble. However, validation set errors indciate that the ensemble model has superior perfor-
mance, compared to the individual base learner that would have been selected by minimizing
cross-validation error (see Figure 7).

4.3. Example 3: Parallelization and advanced thread scheduling

On our test machine (Intel Xeon E5-2670, 16 cores, 128GB of memory), training time was
approximately 6 minutes for npart=10, depsite the fact that servo is a very small data

Mansour T.A. Sharabiani, Alireza S. Mahani 17

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

0 200 400 600 800

1.
0

1.
5

2.
0

2.
5

Base Learner Performance

Base Learner Instances

C
V

 E
rr

or

● NNET
RF
SVM
GBM
KNN

0 20 40 60 80

0.
70

0.
75

0.
80

Integrator Performance

Number of Principal Components

C
V

 E
rr

or

Figure 6: Base learner and integrator performance for servo data set, using 10 partitions
instead of the default value of npart=1.

18 Heterogeneous ensemble meta-learning using EnsemblePCReg

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.0 1.5 2.0 2.5

1.
0

1.
5

2.
0

Base Learner Performance

CV Error

H
ol

d−
O

ut
 E

rr
or

● NNET
RF
SVM
GBM
KNN

● NNET
RF
SVM
GBM
KNN
ensemble

Figure 7: Comparison of CV and validation errors for base learners and ensemble model, for
servo data set, using 10 partitions. See example in Section 4.2.

Mansour T.A. Sharabiani, Alireza S. Mahani 19

set (117 observations and 4 variables in training set). Independence of base learners offers
an obvious parallelization opportunity, which can be exploited via the ncores argument of
epcreg function:

R> t.npart.par <- proc.time()[3]

R> est.npart.par <- epcreg(myformula, data.train, print.level = 0,

+ baselearner.control = control.npart, ncores = 4)

R> t.npart.par <- proc.time()[3]

R> cat("training time - parallel:", t.npart.par, "\n")

R> cat("\tspeedup:", t.npart / t.npart.par, "\n")

training time - parallel: 117.189

speedup: 3.077849

Same parameter can be used to parallelize the predict function. While absolute times for
prediction are much smaller than training times, further reducing prediction times can be
highly valuable for online / streaming analytics.

It must be noted that some base learners such as RF offer their own parallelization opportu-
nities (e.g. due to complete independence of tree-building process in a random forest), but
the outer parallelization is more generally applicable, and also likely to be more efficient since
it is at a coarser level, i.e., each parallel job lasts long enough to amortize parallelization
overhead. The parallelization functionality is made available via the EnsembleBase package,
and is based on the multi-threading implementation of the R package doParallel (Analytics
and Weston 2015).

A 3.1x speedup is decent (and an improvement over the naive scheduling approach, using
as.is for schedule.method) but significantly below the ideal 4x when using 4 cores. As
discussed in Section 3.1, this can be improved by using advanced thread scheduling techniques.
To do so, we extract the vector of base learner training times from the estimation object using
the summary function, and pass this as the task.length parameter to epcreg while setting
the schedule.method parameter to "task.length":

R> tvec <- summary(est.npart)$tvec

R> t.npart.par.opt <- proc.time()[3]

R> est.npart.par.opt <- epcreg(myformula, data.train, print.level = 0,

+ baselearner.control = control.npart, ncores = 4

+ , schedule.method = "task.length"

+ , task.length = tvec)

R> t.npart.par.opt <- proc.time()[3] - t.npart.par.opt

R> cat("training time - parallel & task-length-based load balance:"

+ , t.npart.par.opt, "\n")

R> cat("\tspeedup:", t.npart / t.npart.par.opt, "\n")

training time - parallel & task-length-based load balance: 101.293

speedup: 3.560858

20 Heterogeneous ensemble meta-learning using EnsemblePCReg

We see a meaningful improvement in performance by using estimated task lengths for thread
scheduling. This improvement could have been more dramatic of we had fewer tasks (e.g., if
using fewer partitions).

4.4. Example 4: Using file methods

As mentioned in Section 3.2, ensemble models are not only time-consuming, but also memory-
consuming. EnsemblePCReg provides a functionality for relieving this RAM pressure by
saving base learner estimation objects to temporary files, using R’s tmpfile() service. This
functionality can be activated by setting the argument filemethod to TRUE. In this case, the
trained object returned by epcreg contains the temporary file information holding the actual
base-learner trained objects (on disk). Upon calling predict against the trained object,
these base-learner estimation objects are loaded from disk, used for prediction, and discarded
afterwards. As usual, using this feature is straightforward:

R> est.filemethod <- epcreg(myformula, data.train, print.level = 0

+ , filemethod = TRUE)

We can compare estimation object size with and without file methods:

R> size.mb <- object.size(est) / 1024^2

R> size.filemethod.mb <- object.size(est.filemethod) / 1024^2

R> cat("object size - without file method:", size.mb, "\n")

R> cat("object size - with file method:", size.filemethod.mb, "\n")

object size - without file method: 175.3192 MB

object size - with file method: 3.791229 MB

Estimation objects created using file method can be saved to / load from disk via the special
utility functions provide in the package: epcreg.save and epcreg.load. Same functions can
also be used without file methods, allowing for a single call to handle both cases.

5. Discussion

In this paper, we presented the R package EnsemblePCReg for heterogeneous ensemble meta-
learning of regression models. The package offers a hands-off solution via a unique com-
bination of easy-to-use API, sophisticated EML methodology, and advanced computational
optimization techniques. This combination significantly lowers the barrier for practitioners
to apply HEML techniques to real-world problems. We close out this paper by comparing
EnsemblePCReg to alternative open-source software for HEML, and discussing some of the
limitations and development opportunities of our package.

5.1. Alternative EML software

EnsemblePCReg offers advantages over existing HEML software along its three design objec-
tives: 1) hands-off solution, 2) advanced HEML methodology, and 3) computational efficiency.

Mansour T.A. Sharabiani, Alireza S. Mahani 21

Hands-off solution: As we saw in Section 4.1, training a regression HEML model in Ensem-
blePCReg is as simple as 1) installing and loading the package in R, and 2) calling epcreg

while leaving all other parameters at default values. In contrast, in caretEnsemble (Mayer and
Knowles 2015) one must 1) choose a subset of the 213 base learners available in caret (Kuhn
et al. 2015), 2) for each base learners, define a tuning-parameter grid, 3) either prune the grid
for each base learner via cross-validation in caret or train each base learner on all grid points,
and 4) pass the trained objects to caretEnsemble or caretStack. Aside from having to write
many more lines of code, the burden of choosing base learners and their tuning-parameter
grids is often enough to turn away many users. In SuperLearner (Polley and van der Laan
2014), there is even more effort needed for implementing multiple wrappers around the same
base learner to override default values of tuning parameters. The C++ library ELF adds
further steps to the process, by requiring a detailed project setup. Also, being a standalone
console application, ELF it does not benefit from being part of the R ecosystem (Section 5.3).

Our focus on delivering a hands-off solution in EnsemblePCReg comes at a price: We offer a
smaller selection of base learners, and expose a subset of tuning parameters in the grids. This
decision is driven by several factors: First, adding more base learners would require choosing
sensible default parameter grids for each one. This requires extensive benchmarking work,
as we have done for the current set of base learners. Secondly, adding new base learners
must be done carefully and with consideration of similarity between them and existing base
learners. If we emphasize a particular class of base learners in our mix, the ensemble will
be biased towards their predictions, which may not be a desirable outcome if the dominant
base learners are not among the best performers. Finally, adding more base learners would
have diminishing returns, and the current set of diverse base learners in EnsemblePCReg is
likely to capture the majority of benefits from ensemble meta learning. That being said, the
limited choice of base learners in EnsemblePCReg compared to alternatives such as caret
means that the latter package is more suitable for studying and comparing performance of
specific base learners, while EnsemblePCReg must be used for efficiently generating accurate
HEML models.

Advanced EML methodology: Another unique feature of EnsemblePCReg is utilizing a ro-
bust HEML technique – the DRP framework – with excellent generelization performance,
while avoiding the need for re-training the model prior to prediction tasks. Consider the
caretEnsemble package. It accepts a list of base-learner / tuning-parameter combinations
and submits each one to the train function of caret, which in turn trains each combination
on the full training set, before being passed to the meta-learner used in caretEnsemble. This
means there is no RP pattern used during ensemble generation which – as we saw in Sec-
tion 2.3 – has a significant disadvantage compared to the DRP method in terms of predictive
accuracy. The C++ library ELF also does not use RP for ensemble generation. On the other
hand, SuperLearner uses RP for ensemble generation, but not in ensemble integration. (us-
ing RP for integration has been mentioned as an option in the accompanying paper (Van der
Laan, Polley, and Hubbard 2007).) Instead, it relies on weight constraints to control any
potential overfitting caused by muticollinearity of base learners.

Computational efficiency: While most ensemble software – homogeneous or heterogeneous
– take advantage of obvious parallelization opportunities available in ensemble learning, yet
none tackled the load imbalance problem, which is acute in HEML algorithms due to the
highly non-uniform duration of learning jobs. As we saw in Section 3.1, using estimated
task durations for thread scheduling leads to much better load balance and performance

22 Heterogeneous ensemble meta-learning using EnsemblePCReg

scaling in multi-core parallelization, and EnsemblePCReg is unique in taking advantage of
this optimization strategy. Similarly, memory optimization via file methods is another unique
feature of EnsemblePCReg.

5.2. Extending EnsemblePCReg to classification

EnsemblePCReg is dedicated to regression problems, i.e., when the response variable is con-
tinuous. A significant contribution would be to extend the package (or create new packages)
for classification (binary and categorical response) as well as other domains such as survival
analysis (time-to-event response with potential censoring). The DRP framework used for re-
gression in EnsemblePCReg is likely to prove valuable for other domains as well. Choice of
the particular ensemble integration technique is one area of difference, as PCR is naturally
suited for regression. For classification, an alternative is regularized (logistic or multinomial)
regression. Another area of work is default tuning-parameter grids for classification base
learners. While many packages and techniques used for regression can also target classifica-
tion problems – in fact, many were designed originally for classification – yet their tuning
parameters for classification has significant differences from regression.

5.3. Advantages and limitations of R

Choosing R as the implementation language for the Ensemble collection was driven by several
factors: First, it provides ready access to open-source machine learning libraries in R’s package
ecosystem. This allowed us to avoid ‘re-inventing the wheel’, and focus on novel aspects of
our framework. Secondly, R’s friendly syntax for matrix and vector manipulation provides
for speedy implementation of our packages. Thirdly, the language enjoys a rich interface with
compiled code such as C/C++ and Fortran, allowing developers to offload computationally-
demanding parts of an algorithm to native code, often leading to significant speedup over
interpreted R scripts. Finally, R provides automatic cross-platform compatibility for our
package, making it accessible to all major platforms such as Linux, Windows and Mac. These
advantages made R an ideal environment for a first implementation of our framework.

However, there are also important limitations to the current implementation in R. First, the
parallelization overhead in R is significantly more than its equivalent in C, thus limiting paral-
lelization speedup, especially for collections of small tasks. Secondly, R is inherently inefficient
in handling memory, e.g., due to data duplication and automatic garbage collection. Thirdly,
using high-level API calls provided by other packages for base learner training prevents cer-
tain types of optimization, such as data locality, NUMA-awarness and memory mapping to
reduce total RAM usage and relieve pressure on L3 cache (Mahani and Sharabiani 2015b).
Finally, support for object-oriented programming in R is limited, even with S4 classes.

References

Alfaro E, et al. (2013). “adabag: An R Package for Classification with Boosting and Bagging.”
Journal of Statistical Software, 54(2), 1–35. URL http://www.jstatsoft.org/v54/i02/.

Analytics R, Weston S (2015). doParallel: Foreach Parallel Adaptor for the ’parallel’ Package.
R package version 1.0.10, URL http://CRAN.R-project.org/package=doParallel.

http://www.jstatsoft.org/v54/i02/
http://CRAN.R-project.org/package=doParallel

Mansour T.A. Sharabiani, Alireza S. Mahani 23

Bache K, Lichman M (2013). “UCI Machine Learning Repository.” URL http://archive.

ics.uci.edu/ml.

Bell RM, Koren Y (2007). “Lessons from the Netflix prize challenge.” ACM SIGKDD Explo-
rations Newsletter, 9(2), 75–79.

Breiman L (2000). “Randomizing outputs to increase prediction accuracy.” Machine Learning,
40(3), 229–242.

Breiman L (2001). “Random forests.” Machine learning, 45(1), 5–32.

Chandra R (2001). Parallel programming in OpenMP. Morgan Kaufmann.

Chipman H, McCulloch R (2014). BayesTree: Bayesian Additive Regression Trees. R package
version 0.3-1.2, URL https://CRAN.R-project.org/package=BayesTree.

Chipman HA, et al. (2010). “BART: Bayesian additive regression trees.” The Annals of
Applied Statistics, pp. 266–298.

Friedman J, Hastie T, Tibshirani R (2010). “Regularization paths for generalized linear models
via coordinate descent.” Journal of statistical software, 33(1), 1.

Friedman JH (2001). “Greedy function approximation: a gradient boosting machine.” Annals
of statistics, pp. 1189–1232.

Hastie T, et al. (2009). The elements of statistical learning 2nd edition. New York: Springer.

Hechenbichler KSK (2015). kknn: Weighted k-Nearest Neighbors. R package version 1.3.0,
URL http://CRAN.R-project.org/package=kknn.

Ho TK (1998). “The random subspace method for constructing decision forests.” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 20(8), 832–844.

Holiday R (2012). “What the Failed $1M Netflix Prize Says About Busi-
ness Advice.” http://www.forbes.com/sites/ryanholiday/2012/04/16/

what-the-failed-1m-netflix-prize-tells-us-about-business-advice/. Accessed:
2016-01-01.

Hornik K, et al. (1989). “Multilayer feedforward networks are universal approximators.” Neural
networks, 2(5), 359–366.

Hothorn T, et al. (2016). mboost: Model-Based Boosting. R package version R package version
2.6-0, URL http://CRAN.R-project.org/package=mboost.

Jahrer M (2010). “ELF Ensemble Learning Framework.” http://mloss.org/software/

view/260/.

Johnston C (2012). “Netflix Never Used Its $1 Million Algorithm Due To Engineering Costs.”
http://www.wired.com/2012/04/netflix-prize-costs/. Accessed: 2016-06-03.

Jorge AM, Azevedo PJ (2005). “An experiment with association rules and classification:
Post-bagging and conviction.” In Discovery science, pp. 137–149. Springer.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://CRAN.R-project.org/package=BayesTree
http://CRAN.R-project.org/package=kknn
http://www.forbes.com/sites/ryanholiday/2012/04/16/what-the-failed-1m-netflix-prize-tells-us-about-business-advice/
http://www.forbes.com/sites/ryanholiday/2012/04/16/what-the-failed-1m-netflix-prize-tells-us-about-business-advice/
http://CRAN.R-project.org/package=mboost
http://mloss.org/software/view/260/
http://mloss.org/software/view/260/
http://www.wired.com/2012/04/netflix-prize-costs/

24 Heterogeneous ensemble meta-learning using EnsemblePCReg

Kapelner A, Bleich J (2014). “bartMachine: Machine Learning With Bayesian Additive
Regression Trees.” ArXiv e-prints.

Kuhn M, et al. (2015). caret: Classification and Regression Training. R package version
6.0-62, URL http://CRAN.R-project.org/package=caret.

LeDell E, et al. (2014). subsemble: An Ensemble Method for Combining Subset-Specific
Algorithm Fits. R package version 0.0.9, URL http://CRAN.R-project.org/package=

subsemble.

Liaw A, Wiener M (2002). “Classification and Regression by randomForest.” R News, 2(3),
18–22. URL http://CRAN.R-project.org/doc/Rnews/.

Mahani AS, Sharabiani MT (2015a). EnsembleBase: Extensible Package for Parallel, Batch
Training of Base Learners for Ensemble Modeling. R package version 0.7.2.

Mahani AS, Sharabiani MT (2015b). “SIMD parallel MCMC sampling with applications for
big-data Bayesian analytics.” Computational Statistics & Data Analysis, 88, 75–99.

Mayer ZA, Knowles JE (2015). caretEnsemble: Ensembles of Caret Models. R package version
1.0.0, URL http://CRAN.R-project.org/package=caretEnsemble.

Mendes-Moreira J, et al. (2012). “Ensemble approaches for regression: A survey.” ACM
Computing Surveys (CSUR), 45(1), 10.

Merz CJ, Pazzani MJ (1999). “A principal components approach to combining regression
estimates.” Machine learning, 36(1-2), 9–32.

Meyer D, et al. (2015). e1071: Misc Functions of the Department of Statistics, Probability
Theory Group (Formerly: E1071), TU Wien. R package version 1.6-7, URL http://CRAN.

R-project.org/package=e1071.

Polley E, van der Laan M (2014). SuperLearner: Super Learner Prediction. R package version
2.0-15, URL http://CRAN.R-project.org/package=SuperLearner.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ridgeway G (2015). gbm: Generalized Boosted Regression Models. R package version 2.1.1,
URL http://CRAN.R-project.org/package=gbm.

Samworth RJ, et al. (2012). “Optimal weighted nearest neighbour classifiers.” The Annals of
Statistics, 40(5), 2733–2763.

Sharabiani MT, Mahani AS (2014). EnsemblePenReg: Extensible Classes and Methods for
Penalized-Regression-based Integration of Base Learners. R package version 0.6, URL http:

//CRAN.R-project.org/package=EnsemblePenReg.

Smola A, Vapnik V (1997). “Support vector regression machines.” Advances in neural infor-
mation processing systems, 9, 155–161.

http://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=subsemble
http://CRAN.R-project.org/package=subsemble
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/package=caretEnsemble
http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=SuperLearner
https://www.R-project.org/
http://CRAN.R-project.org/package=gbm
http://CRAN.R-project.org/package=EnsemblePenReg
http://CRAN.R-project.org/package=EnsemblePenReg

Mansour T.A. Sharabiani, Alireza S. Mahani 25

TBD, et al. (2013). “KEEL Data-Mining Software Tool: Data Set Repository, Integration of
Algorithms and Experimental Analysis Framework.” URL http://sci2s.ugr.es/keel/

datasets.php.

Tibshirani R (1996). “Regression shrinkage and selection via the lasso.” Journal of the Royal
Statistical Society. Series B (Methodological), pp. 267–288.

Torgo L (2013). “Regression Data - LIAAD.” URL http://www.dcc.fc.up.pt/~ltorgo/

Regression/DataSets.html.

Van der Laan MJ, Polley EC, Hubbard AE (2007). “Super learner.” Statistical applications
in genetics and molecular biology, 6(1).

Venables WN, Ripley BD (2002). Modern Applied Statistics with S. Fourth edition. Springer,
New York. ISBN 0-387-95457-0, URL http://www.stats.ox.ac.uk/pub/MASS4.

Webb G, et al. (2004). “Multistrategy ensemble learning: Reducing error by combining ensem-
ble learning techniques.” Knowledge and Data Engineering, IEEE Transactions on, 16(8),
980–991.

Wolpert DH (1992). “Stacked generalization.” Neural networks, 5(2), 241–259.

A. List of base learners and tuning parameters

EnsemblePCReg imports base learners from the EnsembleBase package (Mahani and Shara-
biani 2015a) (co-developed by the authors). Currently, seven base learners are available in
EnsembleBase, each based on an existing implementation in R (Table 1) and thinly wrapped
in a uniform interface: 1) random forests (RF) (Breiman 2001), 2) gradient boosting machines
(GBM) (Friedman 2001), 3) feedforward neural networks (NNET) (Hornik et al. 1989), 4)
support vector regression machines (SVM) (Smola and Vapnik 1997), 5) K-nearest neigh-
bors (KNN) (Samworth et al. 2012), 6) penalized (L1/L2) regression (PENREG) (Tibshirani
1996), and 7) Bayesian additive regression trees (BART) (Chipman et al. 2010).

A subset of the tuning parameters for each base learner are deemed ‘configurable’ and exposed
to the user (Table 1). Various combinations of values for these tuning parameters can be
formed to create a configuration set, i.e., a multi-dimensional collection of tuning-parameter
combinations used for training each base learner. By default, a grid of 16 points is created
for each base learner. Definition of these default configuration grids can be seen by typing
?make.configs in an R console (after loading EnsembleBase). The configurable subset of
tuning parameters as well as the default grid for ech base learner are chosen so as to 1) cover
the likely optimal combination in most problems, and 2) induce diversity across different
configurations. Experienced users can override the default settings to define their own grids,
and select a subset of available base learners. By default, 6 of the seven base learner are
included (bart not included due to its generally-long training time), and each one is assigned
a 16-point grid, bringing the total number of models generated during the first step to 6 x 16
= 96.

B. Composing the DRP framework using learner templates

http://sci2s.ugr.es/keel/datasets.php
http://sci2s.ugr.es/keel/datasets.php
http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
http://www.stats.ox.ac.uk/pub/MASS4

26 Heterogeneous ensemble meta-learning using EnsemblePCReg

Algorithm R package Configuration parameters

Neural Network nnet (Venables and Ripley 2002) weight decay
hidden-layer size
maximum iterations

Support Vector Machine e1071 (Meyer et al. 2015) cost of constraints violation
epsilon in insensitive-loss function
kernel type

K-Nearest Neighbors kknn (Hechenbichler 2015) number of neighbors
kernel type

Random Forest randomForest (Liaw and Wiener 2002) number of trees
multiplier of mtry
minimum size of terminal nodes

Gradient Boosting Machine gbm (Ridgeway 2015) number of trees
maximum interaction depth
shrinkage
bagging fraction

Penalized Regression glmnet (Friedman, Hastie, and Tibshirani 2010) Relative weight of L1 vs. L2 loss
shrinkage parameter

Bayesian Additive Regressio Trees bartMachine (Kapelner and Bleich 2014) num trees
k
q
nu

Table 1: List of base learners wrapped in EnsembleBase and imported by EnsemblePCReg,
along with their R implementation, and the subset of tuning parameters that are configurable.
For definition of parameters and other details, see documentation for EnsembleBase and base
learner packages.

Interfaces implemented by predictive models can be classified into two groups, according to
whether they offer an integrated or a stand-alone prediction functionality.

Using the R (R Core Team 2016) syntax for illustration, an interface with integrated prediction
can be described as:

newpred <- model(X, y, newX)

where model refers to a learner, X is the training feature matrix, y is the training response
vector, newX is the feature matrix for test cases, and newpred is the vector of predictions for
test cases. Such models are especially attractive for data science competitions, where newX is
often available at the outset, and where the complex ensemble techniques do not easily lend
themselves to a decoupling of train and predict functions.

On the other hand, an interface with stand-alone prediction (SAP) has the following form:

est <- model.train(X, y)

newpred <- model.predict(est, newX)

where the predictive model has been decoupled into train and predict functions. In addition
to a more efficient prediction process, such interfaces enhance the reproducibility of results.
This is because for many base learners, the training process is stochastic, i.e., it produces a –
perhaps slightly – different trained model, if starting with a different random seed. Therefore,
if the only way to make a prediction is to re-train the model, we can never guarantee the same
results in two runs. (Prediction process is, in contrast, often non-stochastic, given a trained
model.)

Mansour T.A. Sharabiani, Alireza S. Mahani 27

model_A(train_A, predict_A)

model_B(train_B, predict_B)

model_AthenB(train_AthenB

, predict_AthenB):

train_AthenB <- function(X, y) {

est_A <- train_A(X, y)

est_B <- train_B(predict_A(est_A, X), y)

return (list(A = est_A, B = est_B))

}

predict_AthenB <- function(est, newX) {

pred_A <- predict_A(est$A, newX)

return (predict_B(est$B, pred_A))

}

Figure 8: A prototypical pipeline pattern for chaining two models, A and B, implementing
the SAP interface. The prediction matrix from A is used as feature matrix in B. The de-
sign pattern illustrates how the the composite model, AthenB, implements the SAP interface,
(train_AthenB, predict_AthenB), using the implementations of the two constituent mod-
els, (train_A, predict_A) and (train_B, predict_B). R syntax is used for illustration.

With the above in mind, we can state the key software design goals for reproducible ensemble
learning as follows:

1. Define SAP lego blocks, i.e. small, atomic operations (such as base learners) that
decouple prediction from training.

2. Assemble these lego blocks using patterns or templates that preserve SAP property:
This can be accomplished by defining the template in terms of how it generates the
train and predict functions of the composed learner from its constituent learners’ train
and predict functions.

Note that composing complex learners from simpler ones in the above approach is recursive,
i.e., composite learners can be embedded in templates and recombined to form even more
complex learners. Next, we describe the templates that are needed to compose the DRP
framework.

Pipeline template: This is the most fundamental and ubiquitous template for connecting
operations in analytic workflows. It roughly means that ‘the output of the first operation
is used as input into the second operation’. This is a broad definition, since the exact way
in which the second stage consumes the output of the first stage is not specified. A useful,
prototypical case is where the first stage produces a matrix prediction, and this matrix is
used as the feature matrix (X) for the second stage. More formally, consider models A and B,
each having the SAP property. Our prototypical pipeline template defines a composite model
AthenB with the SAP implementation shown in Figure 8.

28 Heterogeneous ensemble meta-learning using EnsemblePCReg

model_A(train_A, predict_A)

model_ADP(train_ADP, predict_ADP):

train_ADP <- function(X, y) {

pred <- double(length(y))

for (k in 1:K) {

est <- train_A(X[part != k,],

y[part != k])

pred[part == k] <- predict_A(est,

X[part == k,])

}

est_full <- train_A(X, y)

return (list(est = est_full,

pred = pred))

}

predict_ADP <- function(est,

newX = NULL) {

if (is.null(newX)) return (est$pred)

return (predict_A(est$est, newX))

}

Figure 9: Rotating-Partition (RP) design pattern: When applied to a SAP base learner, A, it
produces a composite SAP learner, ADP. The pattern assumes that a partition vector, part
is defined, with K folds. This R pseudo-code assumes that the predict method for A returns a
vector, but it can be generalized to other cases, e.g., when it returns a matrix.

Rotating-Partition (RP) Pattern: In Section 2, we discussed stacked generalization as a tech-
nique for overcoming data contamination, and PCR* as a technique for dealing with multi-
collinearity of base learner predictions. These two techniques share the same pattern of
rotating-partitions for doing the seemingly impossible: producing out-of-sample predictions
on the training data. When applied to a SAP base learner, the RP pattern produces a com-
posite SAP learner. Figure 9 presents a formal definition of the RP pattern. The RP pattern
is the central piece of the DRP framework for ensemble regression.

Batch Pattern: The batch pattern does what the name suggests: It batches together a collec-
tion of models and generates a composite model. There are no interactions between models
in the batch pattern. In the DRP framework, the batch pattern is used during the generation
stage. The definition is listed in Figure 10.

Select Learner: This learner also performs a simple task: it selects the feature – from the
columns of its feature matrix – that is the closest to the response vector, i.e., it chooses the
feature vector with the smallest error. The definition is listed in Figure 11.

DRP Framework: Having developed all the necessary SAP lego blocks, we can now assemble
them into an end-to-end ensemble regression framework, referred to as the DRP framework.
The resulting composite SAP learner is illustrated in Figure 12. This figure clearly illustrates

Mansour T.A. Sharabiani, Alireza S. Mahani 29

model_<n>(train_<n>, predict_<n>),

n = 1, ..., N

model_Batch(train_Batch, predict_Batch):

train_Batch <- function(X, y) {

est <- list()

for (n in 1:N) {

est[[n]] <- train_<n>(X, y)

}

return (est)

}

predict_Batch <- function(est, newX) {

pred <- matrix(nrow = nrow(newX)

, ncol = N)

for (n in 1:N) {

pred[, n] <- predict_<n>(est[[n]]

, newX)

}

return (pred)

}

Figure 10: Batch design pattern: A collection of base learners, model_<n>, n = 1, ..., N,
are batched together to produce a composite model, model_Batch. It is assumed that base
learners have vector predictions, and thus the batch learner has a matrix prediction.

train_select <- function(X, y) {

N <- length(y)

err <- double(N)

for (n in 1:N) {

err[n] <- sqrt(mean((X[, n] - y)^2))

}

return (which.min(err))

}

predict_select <- function(est, newX) {

return (newX[, est])

}

Figure 11: Select Learner: It chooses the feature vector with smallest error, e.g., by calculating
the RMSE error of each feature vis-a-vis the response vector.

30 Heterogeneous ensemble meta-learning using EnsemblePCReg

Figure 12: Double-Rotating-Partition framework for heterogeneous ensemble regression. The
generation stage involves a batch of base learners, itself embedded in an RP pattern. The
integration stage consists of an RP-embedded PCR (or penalized regression) operation –
followed by a select operation. Pipeline pattern is used to chain steps together.

the ‘composable’ nature of our design patterns: they can be combined recursively into in-
creasingly composite learners, thanks to all lego blocks and design patterns implementing the
SAP interface.

C. Data sets

Table 2 contains a list of 22 publicly-available data sets used to produce benchmarking results
reported in Section 2.3.

D. R session information

R> sessionInfo()

R version 3.2.5 (2016-04-14)

Platform: x86_64-pc-linux-gnu (64-bit)

Running under: Ubuntu 14.04 LTS

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

Mansour T.A. Sharabiani, Alireza S. Mahani 31

Table 2: Data sets used in the benchmarking test described in Section ??, sorted by size.
Sources: UCI Machine Learning Repository Bache and Lichman (2013), Luis Torgo’s Repos-
itory Torgo (2013), KEEL TBD et al. (2013)

Dataset nobs nvar source

servo 167 4 UCI

machine 209 6 UCI

yacht 308 6 UCI

baseball 337 16 UCI

dee 365 6 KEEL

autompg 392 7 Luis Torgo

ele1 495 2 KEEL

housing 506 13 UCI

wages 534 9 UCI

energy-heating 768 8 UCI

energy-cooling 768 8 UCI

stock 950 9 KEEL

laser 993 4 KEEL

concrete 1030 8 UCI

ele2 1056 4 KEEL

solar flare - c 1066 10 UCI

friedman 1200 5 KEEL

wine - red 1599 11 UCI

plastic 1650 2 KEEL

election 3107 6 UCI

abalone 4177 8 UCI

wine - white 4898 11 UCI

[7] LC_PAPER=en_US.UTF-8 LC_NAME=en_US.UTF-8

[9] LC_ADDRESS=en_US.UTF-8 LC_TELEPHONE=en_US.UTF-8

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=en_US.UTF-8

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] EnsemblePCReg_1.1 EnsembleBase_1.0.1 kknn_1.3.0

loaded via a namespace (and not attached):

32 Heterogeneous ensemble meta-learning using EnsemblePCReg

[1] Rcpp_0.12.1 igraph_1.0.1 magrittr_1.5

[4] itertools_0.1-3 splines_3.2.5 MASS_7.3-44

[7] missForest_1.4 doParallel_1.0.10 gbm_2.1.1

[10] lattice_0.20-33 foreach_1.4.3 minqa_1.2.4

[13] car_2.1-1 tools_3.2.5 nnet_7.3-8

[16] parallel_3.2.5 pbkrtest_0.4-4 grid_3.2.5

[19] glmnet_2.0-2 nlme_3.1-127 mgcv_1.8-12

[22] quantreg_5.19 e1071_1.6-7 MatrixModels_0.4-1

[25] iterators_1.0.8 class_7.3-14 survival_2.39-2

[28] lme4_1.1-10 randomForest_4.6-12 bartMachine_1.2.0

[31] Matrix_1.2-5 rJava_0.9-7 nloptr_1.0.4

[34] codetools_0.2-14 SparseM_1.7

Affiliation:

Alireza S. Mahani
Scientific Computing Group
Sentrana Inc.
1725 I St NW
Washington, DC 20006
E-mail: alireza.s.mahani@gmail.com

mailto:alireza.s.mahani@gmail.com

	Introduction
	Ensemble meta-learning in EnsemblePCReg
	Ensemble generation using SG
	Ensemble integration using PCR*
	Combining SG and PCR*: The DRP framework

	Computational optimizations in EnsemblePCReg
	Advanced thread scheduling
	Memory optimization

	Using EnsemblePCReg
	Example 1: Using default settings
	Example 2: Overriding default settings
	Example 3: Parallelization and advanced thread scheduling
	Example 4: Using file methods

	Discussion
	Alternative EML software
	Extending EnsemblePCReg to classification
	Advantages and limitations of R

	List of base learners and tuning parameters
	Composing the DRP framework using learner templates
	Data sets
	R session information

