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Random numbers following a Standard Normal distribution are of great

importance when using simulations as a means for investigation. The

Ziggurat method (Marsaglia and Tsang, 2000; Leong et al., 2005) is one

of the fastest methods to generate normally distributed random numbers

while also providing excellent statistical properties. This note provides an

updated implementations of the Ziggurat generator suitable for 32- and 64-

bit operating system. It compares the original implementations to several

popular Open Source implementations. A new implementation embeds the

generator into an appropriate C++ class structure. The performance of the

different generator is investigated both via extended timing and through a

series of statistical tests, including a suggested new test for testing Normal

deviates directly. Integration into other systems such as R is discussed as

well.

Introduction

Generating random number for use in simulation is a classic topic

in scientific computing and about as old as the field itself. Most

algorithms concentrate on the uniform distribution. Its values

can be used to generate randomly distributed values from other

distributions simply by using the relevant inverse function.

Regarding terminology, all computational algorithms for gener-

ation of random numbers are by definition deterministic. Here, we

follow standard convention and refer to such numbers as pseudo-

random as they can always be recreated given the seed value for

a given sequence. We are not concerned in this note with quasi-

random numbers (also called low-discrepnancy sequences). We

consider this topic to be subset of pseudo-random numbers subject

to distributional constraints. Without lack of generality, we will

henceforth drop the qualifier pseudo when refering to random

numbers.

Due to its importance for many modeling tasks, the Normal dis-

tribution has also been studied extensively in order to find suitable

direct algorithms which generate stream of normally distributed

(pseudo) random numbers. A well-known examples for such algo-

rithms includes the method by Box and Muller (Box and Muller,

1958). A useful recent survey of the field is provided by Thomas

et al. (2007).

In an important paper, Marsaglia and Tsang (2000) introduced

the Ziggurat method. Since its initial publication, this algorithm

has become reasonably popular1 as it provides a very useful combi-

nation of both excellent statistical properties and execution speed.

Thomas et al. (2007) conclude their survey by saying that

the Ziggurat method, the second in speed, is about 33%

slower than the [fastest]method but does not suffer from

correlation problems. Thus, when maintaining extremely

high statistical quality is the first priority, and subject

to that constraint, speed is also desired, the Ziggurat

method will often be the most appropriate choice.

1
Usage of a code search engine such as code.ohloh.net or codesearch.debian.net provides a good approx-

imation to the popularity of the Ziggurat algorithm as its name is also a reasonably unique search term

within the field of computing.

This paper reexamines the Ziggurat method, provides a new

and portable C++ implementation, and compares it to several

other Open Source implementations of the underlying algorithm

by applying three different statistical tests.

Ziggurat

This sections briefly discusses the key papers related to Ziggurat.

Marsaglia and Tsang. Marsaglia and Tsang (2000) introduced the

Ziggurat method. It provides a fast algorithm for generating both

normally and exponentially distributed random numbers. The

original paper also contains a corresponding implementation in

the C language.

The listing in Figure 1 shows this initial implementation. We

have removed the code for generating exponentially distributed

random numbers as well a comment header from the listing to

keep the display more compact. The full listing is also included in

the RcppZiggurat package for reference.

As can be seen from Figure 1, the Ziggurat algorithm is imple-

mented in bare-bones C code using a number of macros, and two

helper functions. The helper functions allow setting a seed, and

deal with parameter updates needed in about 2.5% of cases. The

actual core component—the function to draw a random number

distributed according to thstandard normal distribution—is pro-

vided by the macro RNOR. Needless to say, using C macros is no

longer cosidered de rigeur. Possible side effects include inadvertent

changes in globally visible variables, as well as possible bugs from

the macro evaluation.

A more important concern is that this implementation uses

unsigned long types, and explicit bit mapping operations. The

code was originally developed for 32-bit operating systems where

int and long are typically four bytes (or 32 bits) wide. Hence the

code does not produce correct results on a 64-bit operating system

as (signed and unsigned) long types are typically eight bytes (or

64 bits) wide (whereas int is still 32 bits).

Our modified version introduced below overcomes both issues.

Leong, Zhang et al. Leong et al. (2005) show in a comment that the

Ziggurat method as introduced by Marsaglia and Tsang (2000)

suffers from another weakness due to the SHR3 generator (by

Marsaglia). The authors show via a χ2-test that the generator

has a short period of about 232 − 1, or the four byte limit. Replac-

ing it with the KISS generator (also by Marsaglia) improves the

performance beyond this limit.

#define MWC ((znew<<16)+wnew )

#define SHR3 (jz=jsr, jsrˆ=(jsr<<13), \

jsrˆ=(jsr>>17), jsrˆ=(jsr<<5),jz+jsr)

#define CONG (jcong=69069*jcong+1234567)

#define KISS ((MWCˆCONG)+SHR3)

#define RNOR (hz=KISS, iz=hz&127, \

(fabs(hz)<kn[iz]) ? hz*wn[iz] : nfix())
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#include <math.h>
static unsigned long jz,jsr=123456789;

#define SHR3 (jz=jsr, jsr^=(jsr<<13), jsr^=(jsr>>17), jsr^=(jsr<<5),jz+jsr)
#define UNI (.5 + (signed) SHR3*.2328306e-9)
#define IUNI SHR3

static long hz;
static unsigned long iz, kn[128], ke[256];
static float wn[128],fn[128], we[256],fe[256];

#define RNOR (hz=SHR3, iz=hz&127, (fabs(hz)<kn[iz])? hz*wn[iz] : nfix())

/* nfix() generates variates from the residue when rejection in RNOR occurs. */
float nfix(void)
{
const float r = 3.442620f; /* The start of the right tail */
static float x, y;
for(;;)
{ x=hz*wn[iz]; /* iz==0, handles the base strip */

if(iz==0)
{ do{ x=-log(UNI)*0.2904764; y=-log(UNI);} /* .2904764 is 1/r */
while(y+y<x*x);
return (hz>0)? r+x : -r-x;

}
/* iz>0, handle the wedges of other strips */

if( fn[iz]+UNI*(fn[iz-1]-fn[iz]) < exp(-.5*x*x) ) return x;

/* initiate, try to exit for(;;) for loop*/
hz=SHR3;
iz=hz&127;
if(fabs(hz)<kn[iz]) return (hz*wn[iz]);

}
}

/*--------This procedure sets the seed and creates the tables------*/
void zigset(unsigned long jsrseed)
{ const double m1 = 2147483648.0, m2 = 4294967296.;

double dn=3.442619855899,tn=dn,vn=9.91256303526217e-3, q;
double de=7.697117470131487, te=de, ve=3.949659822581572e-3;
int i;
jsr^=jsrseed;

/* Set up tables for RNOR */
q=vn/exp(-.5*dn*dn);
kn[0]=(dn/q)*m1;
kn[1]=0;

wn[0]=q/m1;
wn[127]=dn/m1;

fn[0]=1.;
fn[127]=exp(-.5*dn*dn);

for(i=126;i>=1;i--)
{dn=sqrt(-2.*log(vn/dn+exp(-.5*dn*dn)));
kn[i+1]=(dn/tn)*m1;
tn=dn;
fn[i]=exp(-.5*dn*dn);
wn[i]=dn/m1;

}
}

Fig. 1. Ziggurat code by Marsaglia and Tsang (2000).
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Following Leong et al. (2005), Ziggurat code should use an

improved uniform generator. Choices are either KISS as suggested

initially, or another trusted (and fast) uniform generator such as

the Mersenne Twister (Matsumoto and Nishimura, 1998). Other

Open Source implementations (such as the ones discussed below)

frequently use the Mersenne Twister as the souce of uniformly

distributed random numbers.

Voss’s implementation in GNU GSL. Voss (2011) provided another

Ziggurat implementation for use in the GNU Scientific Library or

GSL (Galassi et al., 2013). It uses the Mersenne Twister genera-

tor by Matsumoto and Nishimura (1998) which also avoids the

issue identified by Leong et al. (2005) in which the originally-used

uniform generator had too short a cycle.

Voss (2011) notes two differences between his implementation

and the original work by Marsaglia and Tsang (2000). First, he

uses only 128 instead of 256 steps which reduces the memory

requirements and computational cost at a possible (though pre-

sumably minor) loss of precision. Second, he uses an exponential

distribution with tail rejection for the base strip, which is motivated

by a simpler implementations. Both of these aspects could have

implications for the statistical properties of the generator. Voss

also appears to be unaware of the work by Leong et al. (2005),

yet sidesteps the issue raised by these author by relying on the

Mersenne Twister generator.

Here, the implementation from the current GSL sources and file

randist/gausszig.c is used, and adapted to the class strucuture

detailed in section .

Gretl. The Gretl (Cottrell and Lucchetti, 2015) econometrics pro-

gram contains another Open Source implementation of the Zig-

gurat algorithm. The code credits the implementation by Voss

(2011) described above. Yalta and Schreiber (2012) review the

Gretl implementation and performance of Ziggurat and find it to

be satisfactory.

We use the implementation from the file src/lib/random.c

from the current Gretl sources and adapt to the class strucuture

detailed in section .

QuantLib. The QuantLib library for quantitative finance

(The QuantLib Contributors, 2025) contains another open

source implementation of Ziggurat. It is provided in

the files ql/experimental/math/zigguratrng.hpp and

ql/experimental/math/zigguratrng.cpp. As part of the

experimental section, it is made available for further study and

use, but not yet part of the default build. As before, we integrate

this source into the class structure used here.

Speed

R Generators. Before comparing the speed of the different Ziggurat

implementations, it is also illustrative to compare the different R

generators. Figure 2 provides a comparison.

We see that the Box-Muller generator is the slowest by some

margin. However, both Kinderman-Ramage and Ahrens-Dieter are

faster than the Inversion method chosen as the default in R. So

even before considering Ziggurat generators, R users could reap a

speed benefit simply by calling RNGkind(,"Ahrens-Dieter") or

RNGkind(,"Kinderman-Ramage").

Ziggurat Generators. All Ziggurat generators are significantly faster

the the default generator in R which uses a inversion method.

Among the Ziggurat generators, we notice that approaches us-

ing an external uniform number generator (GNU GSL, GNU Gretl,

QuantLib) are all slower than our compact and self-contained im-

plementation which is seen as the fastest method.

Accuracy

Standard Test for Uniform RNG draws. Test for random number

generators are often focussed on the case of uniform generators

which are the most common type of generators. As detailed for

example in Brown et al. (2013), a test proceeds as follow:

1. Take n draws from a U(0, 1) distribution (as any given U(a, b)

can always be scaled to U(0, 1)), and then compute the sum

of the n values.

2. Repeat this m times to create a set of m sums of uniform RNG

draws.

3. With n large enough, the collection of m results will converge

towards normally distributed random variable with a mean of

n/2 and a standard deviation of
p

n/12 (which is the Irwin-

Hall distribution of the sum of uniformly distributed values).

4. Given this asymptotic result, one can construct a probability

value pi for each of the m values using the inverse of the

Normal distribution using the known mean and standard de-

viation from the Irwin-Hall distribution.

5. We now have m uniformly distributed values. A standard test

such as Kolmogorov-Smirnov or Wilcoxon can be used to test

against departures from the uniform distribution.

Here, we can apply this test for first converting the N(0,1)

distributed values produced by the given Ziggurat implementation

to U(0,1) distributed values by using the inverse of the normal

distribution. We are then ready to simulate and test. Figure 4

below displays Q-Q plots for the empirical distribution against the

uniform, and displays the p-values of a Kolmogorov-Smirnov as

well as a Wilcoxon test.

We see that five of the six generators pass the test. In the case of

the original Marsaglia and Tsang (2000) generator, we can see the

departure from the expected diagonal clearly once we draw more

than 4.2× 109 numbers (which is the limit of the representation

of an unsigned four-byte nunber). However, only the Kolmogorov-

Smirnov test can formally reject; the Wilcoxon test appear to lack

sufficient power in this setting. The QuantLib generator is seen as

suspicious which p-value just below a conventional rejection level.

Normal Test for Normal RNG draws. We can propose a simpler

variant of the test outlined in the previous section. As the random

numbers we are drawing are following a N(0, 1) distribution, the

sum of their values follows a N(0, n) distribution. This allows us

to skip one inversion step:

1. Take n draws from a N(0,1) distribution and then compute

the sum of the n values.

2. Repeats this m times to create a set of m sums of (standard)

normals RNG draws.

3. The collection of the m sums of n normals converges towards

a mean of 0 and a standard deviation of
p

n.
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Fig. 2. R Normal RNG Generator Performance

Note: Figure shows timings from the microbenchmark package using 100

replications of 1,000,000 draws per generator. Code for the figure is included

in the RcppZiggurat package, and the source code for this document.
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Fig. 3. Ziggurat and R Normal RNG Generator Performance

Note: Figure shows timings from the microbenchmark package using 100

replications of 1,000,000 draws per generator. Code for the figure is included

in the RcppZiggurat package, and the source code for this document.
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Fig. 4. Standard Test applied to Ziggurat generators
Note: Code for the figure is included in the RcppZiggurat package, and the

source code for this document.
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Fig. 5. Normal Test applied to Ziggurat generators
Note: Code for the figure is included in the RcppZiggurat package, and the

source code for this document.
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Fig. 6. χ2 Test applied to Ziggurat generators

Note: Code for the figure is included in the RcppZiggurat package, and the source

code for this document.

4. Given this known result, one can construct a probability value

pi for each of the m values using the inverse of the Normal

distribution using the known mean and standard deviation.

5. We again have m uniformly distributed values. A standard

test such as Kolmogorov-Smirnov or Wilcoxon can be used to

test against departures from the uniform distribution.

Results, shown in Figure 5, are qualitatively similar to the result

discussed above. Kolmogorov-Smirnov rejects for the Marsaglia

and Tsang (2000) generator. However, we note that the Wilcoxon

test now has a lower p-value—we would now reject at conventional

test levels. The QuantLib implementation is now rejected by the

Wilcoxon test but not the Kolmogorov-Smirnov.

χ2 test. Another test variant is the χ2 test which was also used by

Leong et al. (2005). The basic idea is as follow:

1. The real line is divided into B bins, equally spaced between

(symmetric) values distant enough from zero so that no N(0, 1)

draw should exceed them.

2. Here, we follow Leong et al. (2005) and use a range from -7

to 7 with a total of 200 bins.

3. A large number of N(0, 1) random variates is drawn, and for

each of these numbers a counter in the bin corresponding to

the draw is increased.

4. After the N draws, the empirical distribution is compared to

the theoretical (provided by the corresponding value of the

Normal density function) using a standard chi2 test.

As can be seen in Figure 6, the original proposal by Marsaglia

and Tsang (2000) fails as was shown by Leong et al. (2005). All

other tests pass again.

C++ Implementation. Preceding work by Marsaglia and Tsang

(2000) and Leong et al. (2005) also contained implementations in

the C language. These versions were implemented in just a few

lines, and used idioms common to C programmers such as macros

and global variables.

C++ programming style permits encapsulation in order to avoid

possible collisions and side-effects. Moreover, by using a modest

amount of object-oriented programming we can use a class struc-

ture with a common base class to express commonalities between

the implementations. The following code segment shows the vir-

tual base class used here.

#ifndef RcppZiggurat__Zigg_h

#define RcppZiggurat__Zigg_h

#include <cmath>

#include <stdint.h> // or cstdint (C++11)

namespace Ziggurat {

class Zigg {

public:

virtual ~Zigg() {};

virtual void setSeed(const uint32_t s) = 0;

// no getSeed() as GSL has none

virtual double norm() = 0;

};

}

#endif

As shown in the preceding code segment, we provide two user-

accessible functions to obtain a normal random deviate, and to set

the seed, respectively. The actual implementation uses portable

types such as uint32_t, an unsigned 32-bit integer provided by

the C header file stdint.h, which provides correct and identical

results on both 32-bit and 64-bit operating systems.

Each actual implementation can then encapsulate its state vari-

able as a private variable inaccessible to other functions. Such a

small core to each class also makes it feasible to provide a Ziggurat

generator in each thread in a parallel execution framework.

Our Ziggurat implementation has no external dependencies and

can therefore be used in other projects. The testing framework

used for this note has a single dependency on the GNU GSL as the

generator by Voss (2011) is used via its GSL implementations. The

generator and testing framework in the corresponding R package

have a build-dependency on R, and are of course accessed by R.

But the generator discussed here could equally well be used in

standalone programs or with other scripting languages.

R Integration

In the RcppZiggurat package, the Rcpp Attributes (Allaire et al.,

2025) feature of the Rcpp C++/R integration package (Eddelbuet-

tel et al., 2015; Eddelbuettel, 2013; Eddelbuettel and Balamuta,

2018) are used to access instances of the corresponding generator

class.

#include <Rcpp.h>

#include <Ziggurat.h>
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static Ziggurat::Ziggurat::Ziggurat zigg;

// [[Rcpp::export]]

Rcpp::NumericVector zrnorm(int n) {

Rcpp::NumericVector x(n);

for (int i=0; i<n; i++) {

x[i] = zigg.norm();

}

return x;

}

// [[Rcpp::export]]

void zsetseed(unsigned long int s) {

zigg.setSeed(s);

return;

}

In this particular reference implementation, we have chosen

a namespace Ziggurat for the entire project. Within this names-

pace, we opted to provided an extra namespace layer for each

generator as some of these generators still use global variables—

which are therefore shielded in their own namespace. For ex-

ample, for the Marsaglia and Tsang (2000) generator, we use

Ziggurat::ZigurratMT. Next is the name of the actual class—

which in the case of the reference implementation shown above

is once again Ziggurat leading to the triple use of the term. Ac-

tual deployment of the Ziggurat generator (without comparison

to other implementations and concerns about interaction between

variables, particularly for the older implementations having global

variables) can of course be used with a single namespace.

The remainder shows how two functions znorm() and

zsetseed() are provided via the attribute [[Rcpp::Export]]

as described in the Rcpp Attributes vignette (Allaire et al., 2025) of

the Rcpp package (Eddelbuettel et al., 2015; Eddelbuettel, 2013;

Eddelbuettel and Balamuta, 2018).

Conclusion

This note describes the RcppZiggurat package and its new im-

plementation of the Ziggurat generator for normally distributed

random numbers. The package is implemented in a way which is

portable so that it can be used on 32-bit and 64-bit operating sys-

tems, filling a gap left by the original implementations (Marsaglia

and Tsang, 2000; Leong et al., 2005).

By embedding the code in a simple C++ class structure, we can

ease testing and comparison of several variants of the algorithm.

Our note reconfirmed the findings by Leong et al. (2005) of a short

cycle due to to the use of an inferior uniform generator. Replacing

the generator leads to better performance.

We suggest a new test for random number generators producing

deviates distributed according to the standard normal distribution

by adapting and simplifying an existing test framework for uniform

deviates. Both tests confirm the (previously documented) failure

of the original Ziggurat proposal but do not find a problem with

any of the new implementations (apart from the still-experimental

QuantLib generator).

A key motivation for this work has been a desire to improve the

speed of creating standard-normally distributed random numbers in

R. We find Ziggurat to be faster than the existing implementations,

and hope that this generator will be of use to those generating

large numbers of draws.

The zigg generator (Eddelbuettel, 2025) provides a lightweight,

portable, zero-dependency implementation suitable for use in other

packages from either R or C/C++ code.
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