Package 'aihuman'

May 7, 2025

Type Package

Title Experimental Evaluation of Algorithm-Assisted Human Decision-Making

Version 1.0.1 **Date** 2025-5-2

Description Provides statistical methods for analyzing experimental evaluation of the causal impacts of algorithmic recommendations on human decisions developed by Imai, Jiang, Greiner, Halen, and Shin (2023) <doi:10.1093/jrsssa/qnad010> and Ben-Michael, Greiner, Huang, Imai, Jiang, and Shin (2024) <doi:10.48550/arXiv.2403.12108>. The data used for this paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

License GPL (>= 2)

URL https://github.com/sooahnshin/aihuman

BugReports https://github.com/sooahnshin/aihuman/issues

Encoding UTF-8 **RoxygenNote** 7.3.2

Imports Rcpp, coda, stats, magrittr, purrr, abind, foreach, parallel, doParallel, ggplot2, dplyr, tidyr, metR, MASS, GLMMadaptive, gbm, tidyselect, stringr, forcats

LinkingTo Rcpp, RcppArmadillo, RcppEigen

Depends R (>= 4.1.0)

Suggests knitr, rmarkdown

VignetteBuilder knitr

LazyData true

NeedsCompilation yes

Author Sooahn Shin [aut, cre] (ORCID: https://orcid.org/0000-0001-6213-2197),
Zhichao Jiang [aut],
Kosuke Imai [aut]

2 Contents

Maintainer Sooahn Shin <sooahnshin@g.harvard.edu>

Repository CRAN

Date/Publication 2025-05-07 15:20:02 UTC

Contents

aihuman-package
AiEvalmeme
APCEsummary
APCEsummaryipw
BootstrapAPCEipw
BootstrapAPCEipwRE
BootstrapAPCEipwREparallel
CalAPCE
CalAPCEipw
CalAPCEipwRE
CalAPCEparallel
CalDelta
CalDIM
CalDIMsubgroup
CalFairness
CalOptimalDecision
CalPS
compute_bounds_aipw
compute_nuisance_functions
compute_nuisance_functions_ai
compute_stats
compute_stats_agreement
compute_stats_aipw
compute_stats_subgroup
crossfit
FTAdata
g_legend
HearingDate
hearingdate_synth
NCAdata
NVCAdata
PlotAPCE
PlotDIMdecisions
PlotDIMoutcomes
PlotFairness
PlotOptimalDecision
PlotPS
PlotSpilloverCRT
PlotSpilloverCRTpower
PlotStackedBar
PlotStackedBarDMF

3 aihuman-package

PlotUtilityDiff				50
plot_agreement				52
plot_diff_ai_aipw .				53
plot_diff_human				55
plot_diff_human_aip	v			57
plot_diff_subgroup				58
plot_preference				60
PSAdata				62
psa_synth				63
- ·				
_				
-				
_				
Index				70
aihuman-package	Experimental Evaluati Making	ion of Algorithm	n-Assisted Human De	ecision-

Description

Provides statistical methods for analyzing experimental evaluation of the causal impacts of algorithmic recommendations on human decisions developed by Imai, Jiang, Greiner, Halen, and Shin (2023) <doi:10.1093/jrsssa/qnad010> and Ben-Michael, Greiner, Huang, Imai, Jiang, and Shin (2024) <doi:10.48550/arXiv.2403.12108>. The data used for this paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Package Content

Index of help topics:

Summary of APCE **APCEsummary APCEsummaryipw** Summary of APCE for frequentist analysis AiEvalmcmc Gibbs sampler for the main analysis BootstrapAPCEipw Bootstrap for estimating variance of APCE ${\tt BootstrapAPCEipwRE}$ Bootstrap for estimating variance of APCE with random effects BootstrapAPCEipwREparallel Bootstrap for estimating variance of APCE with

random effects

CalAPCE Calculate APCE

CalAPCEipw Compute APCE using frequentist analysis 4 aihuman-package

CalAPCEipwRE Compute APCE using frequentist analysis with

random effects

CalAPCEparallel Calculate APCE using parallel computing Calculate diff-in-means estimates CalDIM CalDIMsubgroup Calculate diff-in-means estimates

CalDelta Calculate the delta given the principal stratum

CalFairness Calculate the principal fairness CalOptimalDecision Calculate optimal decision & utility

CalPS Calculate the proportion of principal strata

FTAdata Interim Dane data with failure to appear (FTA)

as an outcome

HearingDate Interim court event hearing date

NCAdata Interim Dane data with new criminal activity

(NCA) as an outcome

NVCAdata Interim Dane data with new violent criminal

activity (NVCA) as an outcome

PSAdata Interim Dane PSA data

PlotAPCE Plot APCE

Plot diff-in-means estimates PlotDIMdecisions PlotDIMoutcomes Plot diff-in-means estimates PlotFairness Plot the principal fairness

Plot optimal decision PlotOptimalDecision

PlotPS Plot the proportion of principal strata (R)

Plot conditional randomization test PlotSpilloverCRT PlotSpilloverCRTpower Plot power analysis of conditional

randomization test

PlotStackedBar Stacked barplot for the distribution of the

decision given psa

PlotStackedBarDMF Stacked barplot for the distribution of the

decision given DMF recommendation

PlotUtilityDiff Plot utility difference

PlotUtilityDiffCI Plot utility difference with 95

interval

Conduct conditional randomization test SpilloverCRT SpilloverCRTpower Conduct power analysis of conditional

randomization test

Test monotonicity TestMonotonicity

TestMonotonicityRE Test monotonicity with random effects

Experimental Evaluation of Algorithm-Assisted aihuman-package

Human Decision-Making

compute_bounds_aipw Compute Risk (AI v. Human)

compute_nuisance_functions

Fit outcome/decision and propensity score

models

compute_nuisance_functions_ai

Fit outcome/decision and propensity score models conditioning on the AI recommendation AiEvalmeme 5

compute_stats_agreement

Agreement of Human and AI Decision Makers

compute_stats_subgroup

Compute Risk (Human+AI v. Human) for a Subgroup

Defined by AI Recommendation

crossfit Crossfitting for nuisance functions

g_legend Pulling ggplot legend

hearingdate_synth Synthetic court event hearing date

plot_diff_ai_aipw Visualize Difference in Risk (AI v. Human) plot_diff_human Visualize Difference in Risk (Human+AI v.

Human)

Human)

Human) for a Subgroup Defined by AI

Recommendation

plot_preference Visualize Preference psa_synth Synthetic PSA data synth Synthetic data table_agreement Table of Agreement

Maintainer

Sooahn Shin <sooahnshin@g.harvard.edu>

Author(s)

Sooahn Shin [aut, cre] (https://orcid.org/0000-0001-6213-2197), Zhichao Jiang [aut], Kosuke Imai [aut]

AiEvalmcmc

Gibbs sampler for the main analysis

Description

See Appendix S5 for more details.

Usage

```
AiEvalmcmc(
  data,
  rho = 0,
  Sigma0.beta.inv = NULL,
  Sigma0.alpha.inv = NULL,
```

6 AiEvalmeme

```
sigma0 = NULL,
beta = NULL,
alpha = NULL,
theta = NULL,
delta = NULL,
n.mcmc = 5 * 10,
verbose = FALSE,
out.length = 10,
beta.zx.off = FALSE,
theta.z.off = FALSE)
```

Arguments

data A data. frame or matrix of which columns consists of pre-treatment covariates,

a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y"

respectively.

rho A sensitivity parameter. The default is 0 which implies the unconfoundedness

assumption (Assumption 4).

Sigma0.beta.inv

Inverse of the prior covariance matrix of beta. The default is a diagonal matrix

with 0.01 diagonal entries.

Sigma0.alpha.inv

Inverse of the prior covariance matrix of alpha. The default is a diagonal matrix

with 0.01 diagonal entries.

sigma0 Prior variance of the cutoff points (theta and delta)

beta Initial value for beta.
alpha Initial value for alpha.
theta Initial value for theta.
delta Initial value for delta.

n.mcmc The total number of MCMC iterations. The default is 50.

verbose A logical argument specified to print the progress on the screen. The default is

FALSE.

out.length An integer to specify the progress on the screen. If verbose = TRUE, every

out.length-th iteration is printed on the screen. The default is 10.

beta.zx.off A logical argument specified to exclude the interaction terms (Z by X) from the

model. The default is FALSE.

theta.z.off A logical argument specified to set same cutoffs theta for treatment and control

group. The default is FALSE.

Value

An object of class mcmc containing the posterior samples.

APCEsummary 7

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 2)</pre>
```

APCEsummary

Summary of APCE

Description

Summary of average principal causal effects (APCE) with ordinal decision.

Usage

```
APCEsummary(apce.mcmc)
```

Arguments

apce.mcmc

APCE.mcmc array generated from CalAPCE or CalAPCEparallel.

Value

A data. frame that consists of mean and quantiles (2.5

References

Imai, K., Jiang, Z., Greiner, D.J., Halen, R., and Shin, S. (2023). "Experimental evaluation of algorithm-assisted human decision-making: application to pretrial public safety assessment." Journal of the Royal Statistical Society: Series A. <DOI:10.1093/jrsssa/qnad010>.

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
subgroup_synth <- list(
   1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
   which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
sample_apce <- CalAPCE(data = synth, mcmc.re = sample_mcmc, subgroup = subgroup_synth)
sample_apce_summary <- APCEsummary(sample_apce[["APCE.mcmc"]])</pre>
```

8 APCEsummaryipw

APCEsumm	arvinu
AFCESUIIIII	arvibw

Summary of APCE for frequentist analysis

Description

Summary of average principal causal effects (APCE) with ordinal decision with frequentist results.

Usage

```
APCEsummaryipw(
  G1_est,
  G2_est,
  G3_est,
  G4_est,
  G5_est,
  G1_boot,
  G2_boot,
  G3_boot,
  G4_boot,
  G5_boot,
  name.group = c("Overall", "Female", "Male", "Non-white\nMale", "White\nMale")
)
```

Arguments

G1_est	List generated from CalAPCEipw for the first subgroup.
G2_est	List generated from CalAPCEipw for the second subgroup.
G3_est	List generated from Calapceipw for the third subgroup.
G4_est	List generated from Calapceipw for the fourth subgroup.
G5_est	List generated from Calapceipw for the fifth subgroup.
G1_boot	List generated from BootstrapAPCEipw for the first subgroup.
G2_boot	List generated from ${\tt BootstrapAPCEipw}$ for the second subgroup.
G3_boot	$List\ generated\ from\ {\tt Bootstrap APCEipw}\ for\ the\ third\ subgroup.$
G4_boot	$List\ generated\ from\ {\tt Bootstrap APCEipw}\ for\ the\ fourth\ subgroup.$
G5_boot	List generated from BootstrapAPCEipw for the fifth subgroup.
name.group	A list of character vectors for the label of five subgroups.

Value

A data. frame that consists of mean and quantiles (2.5

BootstrapAPCEipw 9

Examples

```
data(synth)
synth$SexWhite <- synth$Sex * synth$White</pre>
freq_apce <- CalAPCEipw(synth)</pre>
boot_apce <- BootstrapAPCEipw(synth, rep = 10)</pre>
# subgroup analysis
data_s0 <- subset(synth, synth$Sex == 0, select = -c(Sex, SexWhite))</pre>
freq_s0 <- CalAPCEipw(data_s0)</pre>
boot_s0 <- BootstrapAPCEipw(data_s0, rep = 10)</pre>
data_s1 <- subset(synth, synth$Sex == 1, select = -c(Sex, SexWhite))</pre>
freg_s1 <- CalAPCEipw(data_s1)</pre>
boot_s1 <- BootstrapAPCEipw(data_s1, rep = 10)</pre>
data_s1w0 <- subset(synth, synth$Sex == 1 & synth$White == 0, select = -c(Sex, White, SexWhite))</pre>
freq_s1w0 <- CalAPCEipw(data_s1w0)</pre>
boot_s1w0 <- BootstrapAPCEipw(data_s1w0, rep = 10)</pre>
data_s1w1 <- subset(synth, synth$Sex == 1 & synth$White == 1, select = -c(Sex, White, SexWhite))</pre>
freq_s1w1 <- CalAPCEipw(data_s1w1)</pre>
boot_s1w1 <- BootstrapAPCEipw(data_s1w1, rep = 10)</pre>
freq_apce_summary <- APCEsummaryipw(</pre>
  freq_apce, freq_s0, freq_s1, freq_s1w0, freq_s1w1,
  boot_apce, boot_s0, boot_s1, boot_s1w0, boot_s1w0
PlotAPCE(freq_apce_summary,
  y.max = 0.25, decision.labels = c(
    "signature", "small cash",
    "middle cash", "large cash"
  ), shape.values = c(16, 17, 15, 18),
  col.values = c("blue", "black", "red", "brown", "purple"), label = FALSE
```

BootstrapAPCEipw

Bootstrap for estimating variance of APCE

Description

Estimate variance of APCE for frequentist analysis using bootstrap. See S7 for more details.

Usage

```
BootstrapAPCEipw(data, rep = 1000)
```

data	A data. frame or matrix of which columns consists of pre-treatment covariates,
	a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y).
	The column names of the latter three should be specified as "Z", "D", and "Y"
	respectively.
rep	Size of bootstrap

Value

An object of class list with the following elements:

P.D1.boot	An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity $P(D(1)=d R=r)$, dimension 1 is rep (size of bootstrap), dimension 2 is $(k+1)$ values of D from 0 to k, dimension 3 is $(k+2)$ values of R from 0 to $k+1$.
P.D0.boot	An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity $P(D(0)=dl R=r)$.
APCE.boot	An array with dimension rep by (k+1) by (k+2) for quantity $P(D(1)=dl\ R=r)-P(D(0)=dl\ R=r)$.
P.R.boot	An array with dimension rep by (k+2) for quantity $P(R=r)$ for r from 0 to (k+1).
alpha.boot	An array with estimated alpha for each bootstrap.
delta.boot	An array with estimated delta for each bootstrap.

Examples

```
data(synth)
set.seed(123)
boot_apce <- BootstrapAPCEipw(synth, rep = 100)</pre>
```

BootstrapAPCEipwRE

Bootstrap for estimating variance of APCE with random effects

Description

Estimate variance of APCE for frequentist analysis with random effects using bootstrap. See S7 for more details.

Usage

```
BootstrapAPCEipwRE(
  data,
  rep = 1000,
  fixed,
  random,
  CourtEvent_HearingDate,
  nAGQ = 1
)
```

Arguments

 $\label{eq:Adata} A \ \mathsf{data.frame} \ or \ \mathsf{matrix} \ of \ which \ columns \ consists \ of \ pre-treatment \ covariates,$

a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" $\,$

respectively.

rep Size of bootstrap

BootstrapAPCEipwRE 11

fixed A formula for the fixed-effects part of the model to fit.

random A formula for the random-effects part of the model to fit.

CourtEvent_HearingDate

The court event hearing date.

nAGQ Integer scalar - the number of points per axis for evaluating the adaptive Gauss-

Hermite approximation to the log-likelihood. Defaults to 1, corresponding to

the Laplace approximation.

Value

An object of class list with the following elements:

P.D1.boot	An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity $P(D(1)=dl\ R=r)$, dimension 1 is rep (size of bootstrap), dimension 2 is $(k+1)$ values of D from 0 to k, dimension 3 is $(k+2)$ values of R from 0 to $k+1$.
P.D0.boot	An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity $P(D(0)=d R=r)$.
APCE.boot	An array with dimension rep by (k+1) by (k+2) for quantity $P(D(1)=d R=r)-P(D(0)=d R=r)$.
P.R.boot	An array with dimension rep by $(k+2)$ for quantity $P(R=r)$ for r from 0 to $(k+1)$.

References

Imai, K., Jiang, Z., Greiner, D.J., Halen, R., and Shin, S. (2023). "Experimental evaluation of algorithm-assisted human decision-making: application to pretrial public safety assessment." Journal of the Royal Statistical Society: Series A. <DOI:10.1093/jrsssa/qnad010>.

Examples

BootstrapAPCEipwREparallel

Bootstrap for estimating variance of APCE with random effects

Description

Estimate variance of APCE for frequentist analysis with random effects using bootstrap. See S7 for more details.

Usage

BootstrapAPCEipwREparallel(data, rep = 1000, fixed, random, nAGQ = 1, size = 5)

Arguments

data	A data.frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" respectively.
rep	Size of bootstrap
fixed	A formula for the fixed-effects part of the model to fit.
random	A formula for the random-effects part of the model to fit.
nAGQ	Integer scalar - the number of points per axis for evaluating the adaptive Gauss-Hermite approximation to the log-likelihood. Defaults to 1, corresponding to the Laplace approximation.
size	The number of parallel computing. The default is 5.

Value

An object of class list with the following elements:

P.D1.boot	An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity $P(D(1)=dl\ R=r)$, dimension 1 is rep (size of bootstrap), dimension 2 is $(k+1)$ values of D from 0 to k, dimension 3 is $(k+2)$ values of R from 0 to $k+1$.
P.D0.boot	An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity $P(D(0)=dl R=r)$.
APCE.boot	An array with dimension rep by (k+1) by (k+2) for quantity $P(D(1)=d R=r)-P(D(0)=d R=r)$.
P.R.boot	An array with dimension rep by $(k+2)$ for quantity $P(R=r)$ for r from 0 to $(k+1)$.

References

Imai, K., Jiang, Z., Greiner, D.J., Halen, R., and Shin, S. (2023). "Experimental evaluation of algorithm-assisted human decision-making: application to pretrial public safety assessment." Journal of the Royal Statistical Society: Series A. <DOI:10.1093/jrsssa/qnad010>.

CalAPCE 13

Examples

CalAPCE

Calculate APCE

Description

Calculate average principal causal effects (APCE) with ordinal decision. See Section 3.4 for more details.

Usage

```
CalAPCE(
  data,
 mcmc.re,
  name.group = c("overall", "Sex0", "Sex1", "Sex1 White0", "Sex1 White1"),
  rho = 0,
  burnin = 0,
  out.length = 500,
  c0 = 0,
  c1 = 0,
  ZX = NULL
  save.individual.optimal.decision = FALSE,
  parallel = FALSE,
  optimal.decision.only = FALSE,
  dmf = NULL,
  fair.dmf.only = FALSE
)
```

Arguments

data

A data. frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y).

14 CalAPCE

The column names of the latter three should be specified as "Z", "D", and "Y" respectively. A mcmc object generated by AiEvalmcmc() function. mcmc.re A list of numeric vectors for the index of each of the five subgroups. subgroup name.group A list of character vectors for the label of five subgroups. A sensitivity parameter. The default is 0 which implies the unconfoundedness rho assumption (Assumption 4). burnin A proportion of burnin for the Markov chain. The default is 0. out.length An integer to specify the progress on the screen. Every out.length-th iteration is printed on the screen. The default is 500.

c0 The cost of an outcome. See Section 3.7 for more details. The default is 0.

The cost of an unnecessarily harsh decision. See Section 3.7 for more details.

The default is 0.

ZX The data matrix for interaction terms. The default is the interaction between Z

and all of the pre-treatment covariates (X).

save.individual.optimal.decision

A logical argument specified to save individual optimal decision rules. The

default is FALSE.

parallel A logical argument specifying whether parallel computing is conducted. Do not

change this argument manually.

optimal.decision.only

A logical argument specified to compute only the optimal decision rule. The

default is FALSE.

dmf A numeric vector of binary DMF recommendations. If null, use judge's deci-

sions (0 if the decision is 0 and 1 o.w; e.g., signature or cash bond).

fair.dmf.only A logical argument specified to compute only the fairness of given DMF rec-

ommendations. The default is FALSE. Not used in the analysis for the JRSSA

paper.

Value

c1

An object of class list with the following elements:

P.D1.mcmc	An array with dimension n.mcmc by 5 by $(k+1)$ by $(k+2)$ for quantity $P(D(1)=dR=r)$, dimension 1 is each posterior sample; dimension 2 is subgroup, dimension 3 is $(k+1)$ values of D from 0 to k, dimension 4 is $(k+2)$ values of R from 0 to $k+1$.
P.D0.mcmc	An array with dimension n.mcmc by 5 by (k+1) by (k+2) for quantity $P(D(0)=dR=r)$.
APCE.mcmc	An array with dimension n.mcmc by 5 by (k+1) by (k+2) for quantity $P(D(1)=dR=r)-P(D(0)=dR=r)$.

P.R.mcmc An array with dimension n.mcmc by 5 by (k+2) for quantity P(R=r) for r from

0 to (k+1).

CalAPCEipw 15

Optimal.Z.mcmc An array with dimension n.mcmc by 5 for the proportion of the cases where treatment (PSA provided) is optimal.

Optimal.D.mcmc An array with dimension n.mcmc by 5 by (k+1) for the proportion of optimal decision rule (average over observations). If save.individual.optimal.decision = TRUE, the dimension would be n by (k+1) (average over mcmc samples).

P.DMF.mcmc An array with dimension n.mcmc by 5 by (k+1) by (k+2) for the proportion of binary DMF recommendations. Not used in the analysis for the JRSSA paper.

Utility.g_d.mcmc

Included if save.individual.optimal.decision = TRUE. An array with dimension n for the individual utility of judge's decisions.

Utility.g_dmf.mcmc

Included if save.individual.optimal.decision = TRUE. An array with dimension n for the individual utility of DMF recommendation.

Utility.diff.control.mcmc

Included if save.individual.optimal.decision = TRUE. An array with dimension n.mcmc for estimated difference in utility between judge's decisions and DMF recommendation among control group.

Utility.diff.treated.mcmc

Included if save.individual.optimal.decision = TRUE. An array with dimension n.mcmc for estimated difference in utility between judge's decisions and DMF recommendation among treated group.

References

Imai, K., Jiang, Z., Greiner, D.J., Halen, R., and Shin, S. (2023). "Experimental evaluation of algorithm-assisted human decision-making: application to pretrial public safety assessment." Journal of the Royal Statistical Society: Series A. <DOI:10.1093/jrsssa/qnad010>.

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 2)
subgroup_synth <- list(
   1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
   which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
sample_apce <- CalAPCE(data = synth, mcmc.re = sample_mcmc, subgroup = subgroup_synth)</pre>
```

CalAPCEipw

Compute APCE using frequentist analysis

Description

Estimate propensity score and use Hajek estimator to compute APCE. See S7 for more details.

16 CalAPCEipwRE

Usage

```
CalAPCEipw(data)
```

Arguments

data

A data.frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" respectively.

Value

An object of class list with the following elements:

P.D1	An array with dimension $(k+1)$ by $(k+2)$ for quantity $P(D(1)=dl\ R=r)$, dimension 1 is $(k+1)$ values of D from 0 to k, dimension 2 is $(k+2)$ values of R from 0 to $k+1$.
P.D0	An array with dimension $(k+1)$ by $(k+2)$ for quantity $P(D(0)=d R=r)$.
APCE	An array with dimension (k+1) by (k+2) for quantity $P(D(1)=d R=r)-P(D(0)=d R=r)$.
P.R	An array with dimension $(k+2)$ for quantity $P(R=r)$ for r from 0 to $(k+1)$.
alpha	An array with estimated alpha.
delta	An array with estimated delta.

Examples

```
data(synth)
freq_apce <- CalAPCEipw(synth)</pre>
```

 ${\tt CalAPCEipwRE}$

Compute APCE using frequentist analysis with random effects

Description

Estimate propensity score and use Hajek estimator to compute APCE. See S7 for more details.

Usage

```
CalAPCEipwRE(data, fixed, random, nAGQ = 1)
```

CalAPCEipwRE 17

Arguments

data	A data. frame or matrix of which columns consists of pre-treatment covariates,
	a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y).
	The column names of the latter three should be specified as "Z", "D", and "Y"
	respectively.
fived	A formula for the fixed-effects part of the model to fit

fixed A formula for the fixed-effects part of the model to fit.

A formula for the random-effects part of the model to fit.

nAGQ Integer scalar - the number of points per axis for evaluating the adaptive Gauss-

Hermite approximation to the log-likelihood. Defaults to 1, corresponding to

the Laplace approximation.

Value

An object of class list with the following elements:

P.D1	An array with dimension $(k+1)$ by $(k+2)$ for quantity $P(D(1)=dl R=r)$, dimension 1 is $(k+1)$ values of D from 0 to k, dimension 2 is $(k+2)$ values of R from 0 to $k+1$.
P.D0	An array with dimension $(k+1)$ by $(k+2)$ for quantity $P(D(0)=dl R=r)$.
APCE	An array with dimension (k+1) by (k+2) for quantity $P(D(1)=d R=r)-P(D(0)=d R=r)$.
P.R	An array with dimension $(k+2)$ for quantity $P(R=r)$ for r from 0 to $(k+1)$.
alpha	An array with estimated alpha.
delta	An array with estimated delta.

References

Imai, K., Jiang, Z., Greiner, D.J., Halen, R., and Shin, S. (2023). "Experimental evaluation of algorithm-assisted human decision-making: application to pretrial public safety assessment." Journal of the Royal Statistical Society: Series A. <DOI:10.1093/jrsssa/qnad010>.

Examples

18 CalAPCEparallel

CalAPCEparallel

Calculate APCE using parallel computing

Description

Calculate average principal causal effects (APCE) with ordinal decision using parallel computing. See Section 3.4 for more details.

Usage

```
CalAPCEparallel(
  data,
 mcmc.re,
  subgroup,
  name.group = c("overall", "Sex0", "Sex1", "Sex1 White0", "Sex1 White1"),
  rho = 0,
 burnin = 0,
 out.length = 500,
  c0 = 0,
  c1 = 0,
  ZX = NULL,
  save.individual.optimal.decision = FALSE,
 optimal.decision.only = FALSE,
  dmf = NULL,
  fair.dmf.only = FALSE,
  size = 5
)
```

data	A data.frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" respectively.
mcmc.re	A mcmc object generated by AiEvalmcmc() function.
subgroup	A list of numeric vectors for the index of each of the five subgroups.
name.group	A list of character vectors for the label of five subgroups.
rho	A sensitivity parameter. The default is 0 which implies the unconfoundedness assumption (Assumption 4).
burnin	A proportion of burnin for the Markov chain. The default is 0.
out.length	An integer to specify the progress on the screen. Every out.length-th iteration is printed on the screen. The default is 500.
с0	The cost of an outcome. See Section 3.7 for more details. The default is θ .
c1	The cost of an unnecessarily harsh decision. See Section 3.7 for more details. The default is \emptyset .

CalAPCEparallel 19

ZX The data matrix for interaction terms. The default is the interaction between Z and all of the pre-treatment covariates (X).

save.individual.optimal.decision

A logical argument specified to save individual optimal decision rules. The default is FALSE.

optimal.decision.only

A logical argument specified to compute only the optimal decision rule. The default is FALSE.

A numeric vector of binary DMF recommendations. If null, use judge's decisions (0 if the decision is 0 and 1 o.w; e.g., signature or cash bond).

fair.dmf.only A logical argument specified to compute only the fairness of given DMF recommendations. The default is FALSE. Not used in the analysis for the JRSSA paper.

size The number of parallel computing. The default is 5.

Value

An object of class list with the following elements:

P.D1.mcmc An array with dimension n.mcmc by 5 by (k+1) by (k+2) for quantity P(D(1)=dR=r), dimension 1 is each posterior sample; dimension 2 is subgroup, dimension 3 is (k+1) values of D from 0 to k, dimension 4 is (k+2) values of R from 0 to k+1. P.D0.mcmc An array with dimension n.mcmc by 5 by (k+1) by (k+2) for quantity P(D(0)=dR=r).

APCE.mcmc An array with dimension n.mcmc by 5 by (k+1) by (k+2) for quantity P(D(1)=dl R=r)-P(D(0)=dl R=r).

P.R. mcmc An array with dimension n.mcmc by 5 by (k+2) for quantity P(R=r) for r from 0 to (k+1).

Optimal.Z.mcmc An array with dimension n.mcmc by 5 for the proportion of the cases where treatment (PSA provided) is optimal.

Optimal.D.mcmc An array with dimension n.mcmc by 5 by (k+1) for the proportion of optimal decision rule.

P. DMF. mcmc An array with dimension n.mcmc by 5 by (k+1) by (k+2) for the proportion of binary DMF recommendations. Not used in the analysis for the JRSSA paper.

Utility.g_d.mcmc

Included if save.individual.optimal.decision = TRUE. An array with dimension n for the individual utility of judge's decisions.

Utility.g_dmf.mcmc

Included if save.individual.optimal.decision = TRUE. An array with dimension n for the individual utility of DMF recommendation.

Utility.diff.control.mcmc

Included if save.individual.optimal.decision = TRUE. An array with dimension n.mcmc for estimated difference in utility between judge's decisions and DMF recommendation among control group.

20 CalDelta

```
Utility.diff.treated.mcmc
```

Included if save.individual.optimal.decision = TRUE. An array with dimension n.mcmc for estimated difference in utility between judge's decisions and DMF recommendation among treated group.

References

Imai, K., Jiang, Z., Greiner, D.J., Halen, R., and Shin, S. (2023). "Experimental evaluation of algorithm-assisted human decision-making: application to pretrial public safety assessment." Journal of the Royal Statistical Society: Series A. <DOI:10.1093/jrsssa/qnad010>.

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
subgroup_synth <- list(
   1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
   which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
sample_apce <- CalAPCEparallel(
   data = synth, mcmc.re = sample_mcmc,
   subgroup = subgroup_synth,
   size = 1
) # adjust the size</pre>
```

CalDelta

Calculate the delta given the principal stratum

Description

Calculate the maximal deviation of decisions probability among the distributions for different groups (delta) given the principal stratum (R).

Usage

```
CalDelta(r, k, pd0, pd1, attr)
```

r	The given principal stratum.
k	The maximum decision (e.g., largest bail amount).
pd0	P.D0.mcmc array generated from CalAPCE or CalAPCEparallel.
pd1	P.D1.mcmc array generated from CalAPCE or CalAPCEparallel.
attr	The index of subgroups (within the output of CalAPCE/CalAPCEparallel) that corresponds to the protected attributes.

CalDIM 21

Value

A data. frame of the delta.

Examples

```
data(synth)
subgroup_synth <- list(
  1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
  which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
sample_apce <- CalAPCE(
  data = synth, mcmc.re = sample_mcmc, subgroup = subgroup_synth,
  burnin = 0
)
CalDelta(0, 3, sample_apce[["P.D0.mcmc"]], sample_apce[["P.D1.mcmc"]], c(2, 3))</pre>
```

CalDIM

Calculate diff-in-means estimates

Description

Calculate average causal effect based on diff-in-means estimator.

Usage

```
CalDIM(data)
```

Arguments

data

A data.frame of which columns includes a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y).

Value

A data. frame of diff-in-means estimates effect for each value of D and Y.

Examples

```
data(synth)
CalDIM(synth)
```

22 CalFairness

	n -			
Cal	DH	Msut	າgr	ดเมก

Calculate diff-in-means estimates

Description

Calculate average causal effect based on diff-in-means estimator.

Usage

```
CalDIMsubgroup(
  data,
  subgroup,
  name.group = c("Overall", "Female", "Male", "Non-white\nMale", "White\nMale")
)
```

Arguments

data A data.frame of which columns includes a binary treatment (Z), an ordinal

decision (D), and an outcome variable (Y).

subgroup A list of numeric vectors for the index of each of the five subgroups.

name.group A character vector including the labels of five subgroups.

Value

A data. frame of diff-in-means estimates for each value of D and Y for each subgroup.

Examples

```
data(synth)
subgroup_synth <- list(
   1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
   which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
CalDIMsubgroup(synth, subgroup = subgroup_synth)</pre>
```

CalFairness

Calculate the principal fairness

Description

See Section 3.6 for more details.

Usage

```
CalFairness(apce, attr = c(2, 3))
```

CalOptimalDecision 23

Arguments

apce The list generated from CalAPCE or CalAPCEparallel.

attr The index of subgroups (within the output of CalAPCE/CalAPCEparallel) that

corresponds to the protected attributes.

Value

A data. frame of the delta.

Examples

```
data(synth)
subgroup_synth <- list(
   1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
   which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
sample_apce <- CalAPCE(
   data = synth, mcmc.re = sample_mcmc, subgroup = subgroup_synth,
   burnin = 0
)
CalFairness(sample_apce)</pre>
```

CalOptimalDecision

Calculate optimal decision & utility

Description

(1) Calculate optimal decision for each observation given each of c0 (cost of an outcome) and c1 (cost of an unnecessarily harsh decision) from the lists. (2) Calculate difference in the expected utility between binary version of judge's decisions and DMF recommendations given each of c0 (cost of an outcome) and c1 (cost of an unnecessarily harsh decision) from the lists.

Usage

```
CalOptimalDecision(
  data,
  mcmc.re,
  c0.ls,
  c1.ls,
  dmf = NULL,
  rho = 0,
  burnin = 0,
  out.length = 500,
  ZX = NULL,
  size = 5,
```

24 CalOptimalDecision

```
include.utility.diff.mcmc = FALSE
)
```

Arguments

data	A data.frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" respectively.
mcmc.re	A mcmc object generated by AiEvalmcmc() function.
c0.1s	The list of cost of an outcome. See Section 3.7 for more details.
c1.ls	The list of cost of an unnecessarily harsh decision. See Section 3.7 for more details.
dmf	A numeric vector of binary DMF recommendations. If null, use judge's decisions (0 if the decision is 0 and 1 o.w; e.g., signature or cash bond).
rho	A sensitivity parameter. The default is 0 which implies the unconfoundedness assumption (Assumption 4).
burnin	A proportion of burnin for the Markov chain. The default is 0.
out.length	An integer to specify the progress on the screen. Every out.length-th iteration is printed on the screen. The default is 500.
ZX	The data matrix for interaction terms. The default is the interaction between Z and all of the pre-treatment covariates (X).
size	The number of parallel computing. The default is 5.
include.utilit	y.diff.mcmc
	A logical argument specifying whether to save Utility.diff.control.mcmc and Utility.diff.treated.mcmc for Figure S17. The default is FALSE.

Value

A data.frame of (1) the probability that the optimal decision for each observation being d in (0,1,...,k), (2) expected utility of binary version of judge's decision (g_d) , (3) expected utility of binary DMF recommendation, and (4) the difference between (2) and (3). If include.utility.diff.mcmc = TRUE, returns a list of such data.frame and a data.frame that includes the result for mean and quantile of Utility.diff.control.mcmc and Utility.diff.treated.mcmc across mcmc samples.

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
sample_optd <- CalOptimalDecision(
  data = synth, mcmc.re = sample_mcmc,
  c0.ls = seq(0, 5, 1), c1.ls = seq(0, 5, 1),
  size = 1
) # adjust the size</pre>
```

CalPS 25

CalPS

Calculate the proportion of principal strata (R)

Description

Calculate the proportion of each principal stratum (R).

Usage

```
CalPS(
  p.r.mcmc,
  name.group = c("Overall", "Female", "Male", "Non-white\nMale", "White\nMale")
)
```

Arguments

p.r.mcmc P.R.mcmc array generated from CalAPCE or CalAPCEparallel.

name.group A character vector including the labels of five subgroups.

Value

A data. frame of the proportion of each principal stratum.

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
subgroup_synth <- list(
   1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
   which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
sample_apce <- CalAPCE(
   data = synth, mcmc.re = sample_mcmc,
   subgroup = subgroup_synth
)
CalPS(sample_apce[["P.R.mcmc"]])</pre>
```

```
compute_bounds_aipw Compute Risk (AI v. Human)
```

Description

Compute the difference in risk between AI and human decision makers using AIPW estimators.

Usage

```
compute_bounds_aipw(
   Y,
   A,
   D,
   Z,
   X = NULL,
   nuis_funcs,
   nuis_funcs_ai,
   true.pscore = NULL,
   101 = 1
)
```

Arguments

Υ	An observed outcome (binary: numeric vector of 0 or 1).
Α	An observed AI recommendation (binary: numeric vector of 0 or 1).
D	An observed decision (binary: numeric vector of 0 or 1).
Z	A treatment indicator (binary: numeric vector of 0 or 1).
X	Pretreatment covariate used for subgroup analysis (vector). Must be the same length as Y, D, Z, and A if provided. Default is NULL.
nuis_funcs	output from compute_nuisance_functions
nuis_funcs_ai	<pre>output from compute_nuisance_functions_ai</pre>
true.pscore	A vector of true propensity scores (numeric), if available. Optional.
101	Ratio of the loss between false positives and false negatives

Value

A tibble the following columns:

- Z_focal: The focal treatment indicator. '1' indicates the treatment group.
- Z_compare: The comparison treatment indicator. '0' indicates the control group.
- X: Pretreatment covariate (if provided).
- fn_diff_lb: The lower bound of difference in false negatives
- fn_diff_ub: The upper bound of difference in false negatives

- fp_diff_lb: The lower bound of difference in false positives
- fp_diff_ub: The upper bound of difference in false positives
- loss_diff_lb: The lower bound of difference in loss
- loss_diff_ub: The upper bound of difference in loss
- fn_diff_lb_se: The standard error of the difference in false negatives
- fn_diff_ub_se: The standard error of the difference in false negatives
- fp_diff_lb_se: The standard error of the difference in false positives
- fp_diff_ub_se: The standard error of the difference in false positives
- loss_diff_lb_se: The standard error of the difference in loss
- loss_diff_ub_se: The standard error of the difference in loss

Examples

```
compute_bounds_aipw(
   Y = NCAdata$Y,
   A = PSAdata$DMF,
   D = ifelse(NCAdata$D == 0, 0, 1),
   Z = NCAdata$Z,
   nuis_funcs = nuis_func,
   nuis_funcs_ai = nuis_func_ai,
   true.pscore = rep(0.5, nrow(NCAdata)),
   X = NULL,
   101 = 1
)
```

compute_nuisance_functions

Fit outcome/decision and propensity score models

Description

```
Fit (1) the decision model m^D(z,X_i) := \Pr(D=1 \mid Z=z,X=X_i) and (2) the outcome model m^Y(z,X_i) := \Pr(Y=1 \mid D=0,Z=z,X=X_i) for each treatment group z \in \{0,1\} and (3) the propensity score model e(1,X_i) := \Pr(Z=1 \mid X=X_i).
```

Usage

```
compute_nuisance_functions(
   Y,
   D,
   Z,
   V,
   d_form = D ~ .,
   y_form = Y ~ .,
   ps_form = Z ~ .,
```

```
distribution = "bernoulli",
  n.trees = 1000,
  shrinkage = 0.01,
  interaction.depth = 1,
  ...
)
```

Arguments

Value

A list with the following components:

```
z_models A data.frame with the following columns:
    idx Index of observation.
    d_pred Predicted probability of decision.
    y_pred Predicted probability of outcome.
    Z Treatment group.
pscore A vector of predicted propensity scores.
```

Examples

```
compute_nuisance_functions(
   Y = NCAdata$Y,
   D = ifelse(NCAdata$D == 0, 0, 1),
   Z = NCAdata$Z,
   V = NCAdata[, c("Sex", "White", "Age")],
   shrinkage = 0.01,
   n.trees = 1000
)
```

```
compute_nuisance_functions_ai
```

Fit outcome/decision and propensity score models conditioning on the AI recommendation

Description

Fit (1) the decision model $m^D(z,a,X_i) := \Pr(D=1 \mid Z=z,A=a,X=X_i)$ and (2) the outcome model $m^Y(z,a,X_i) := \Pr(Y=1 \mid D=0,Z=z,A=a,X=X_i)$ for each treatment group $z \in \{0,1\}$ and AI recommendation $a \in \{0,1\}$, and (3) the propensity score model $e(1,X_i) := \Pr(Z=1 \mid X=X_i)$.

Usage

```
compute_nuisance_functions_ai(
   Y,
   D,
   Z,
   A,
   V,
   d_form = D ~ .,
   y_form = Y ~ .,
   ps_form = Z ~ .,
   distribution = "bernoulli",
   n.trees = 1000,
   shrinkage = 0.01,
   interaction.depth = 1,
   ...
)
```

```
Υ
                  An observed outcome (binary: numeric vector of 0 or 1).
D
                   An observed decision (binary: numeric vector of 0 or 1).
Ζ
                  A treatment indicator (binary: numeric vector of 0 or 1).
                  An AI recommendation (binary: numeric vector of 0 or 1).
Α
٧
                   A matrix of pretreatment covariates for nuisance functions.
d_form
                  A formula for decision model where the dependent variable is D.
y_form
                  A formula for outcome model where the dependent variable is Y.
ps_form
                   A formula for propensity score model.
distribution
                  A distribution argument used in gbm function. Default is "bernoulli".
                  Integer specifying the total number of trees to fit used in gbm function.
n.trees
                  A shrinkage parameter used in gbm function.
shrinkage
interaction.depth
                  Integer specifying the maximum depth of each tree used in gbm function.
                  Additional arguments to be passed to gbm function called in crossfit
```

30 compute_stats

Value

```
A list with the following components:
```

```
z_models A data.frame with the following columns:
    idx Index of observation.
    d_pred Predicted probability of decision.
    y_pred Predicted probability of outcome.
    Z Treatment group.
    A AI recommendation.
pscore A vector of predicted propensity scores.
```

Examples

```
compute_nuisance_functions_ai(
    Y = NCAdata$Y,
    D = ifelse(NCAdata$D == 0, 0, 1),
    Z = NCAdata$Z,
    A = PSAdata$DMF,
    V = NCAdata[, c("Sex", "White", "Age")],
    shrinkage = 0.01,
    n.trees = 1000
)
```

compute_stats

Compute Risk (Human+AI v. Human)

Description

Compute the difference in risk between human+AI and human decision makers using difference-in-means estimators.

Usage

```
compute_stats(Y, D, Z, X = NULL, 101 = 1)
```

Υ	An observed outcome (binary: numeric vector of 0 or 1).
D	An observed decision (binary: numeric vector of 0 or 1).
Z	A treatment indicator (binary: numeric vector of 0 or 1).
X	Pretreatment covariate used for subgroup analysis (vector). Must be the same length as $Y,D,Z,$ and A if provided. Default is NULL.
101	Ratio of the loss between false positives and false negatives

Value

A tibble the following columns:

- Z_focal: The focal treatment indicator. '1' indicates the treatment group.
- Z_compare: The comparison treatment indicator. '0' indicates the control group.
- X: Pretreatment covariate (if provided).
- loss_diff: The difference in loss between human+AI and human decision
- loss_diff_se: The standard error of the difference in loss
- fn_diff: The difference in false negatives between human+AI and human decision
- fn_diff_se: The standard error of the difference in false negatives
- fp_diff: The difference in false positives between human+AI and human decision
- fp_diff_se: The standard error of the difference in false positives

Examples

```
compute_stats(
   Y = NCAdata$Y,
   D = ifelse(NCAdata$D == 0, 0, 1),
   Z = NCAdata$Z,
   X = NULL,
   101 = 1
)
```

compute_stats_agreement

Agreement of Human and AI Decision Makers

Description

Estimate the impact of AI recommendations on the agreement between human decisions and AI recommendations using a difference-in-means estimator of an indicator $1\{D_i = A_i\}$.

Usage

```
compute_stats_agreement(Y, D, Z, A, X = NULL)
```

Υ	An observed outcome (binary: numeric vector of 0 or 1).
D	An observed decision (binary: numeric vector of 0 or 1).
Z	A treatment indicator (binary: numeric vector of 0 or 1).
Α	An AI recommendation (binary: numeric vector of 0 or 1).
Χ	Pretreatment covariate used for subgroup analysis (vector). Must be the same length as Y, D, Z, and A if provided. Default is NULL.

32 compute_stats_aipw

Value

A tibble with the following columns:

- X: Pretreatment covariate (if provided).
- agree_diff: Difference in agreement between human decisions and AI recommendations.
- agree_diff_se: Standard error of the difference in agreement.

Examples

```
compute_stats_agreement(
   Y = NCAdata$Y,
   D = ifelse(NCAdata$D == 0, 0, 1),
   Z = NCAdata$Z,
   A = PSAdata$DMF
)
```

compute_stats_aipw

Compute Risk (Human+AI v. Human)

Description

Compute the difference in risk between human+AI and human decision makers using AIPW estimators.

Usage

```
compute_stats_aipw(Y, D, Z, nuis_funcs, true.pscore = NULL, X = NULL, 101 = 1)
```

Υ	An observed outcome (binary: numeric vector of 0 or 1).
D	An observed decision (binary: numeric vector of 0 or 1).
Z	A treatment indicator (binary: numeric vector of 0 or 1).
nuis_funcs	output from compute_nuisance_functions
true.pscore	A vector of true propensity scores (numeric), if available. Optional.
X	Pretreatment covariate used for subgroup analysis (vector). Must be the same length as Y, D, Z, and A if provided. Default is NULL.
101	Ratio of the loss between false positives and false negatives

Value

A tibble the following columns:

- Z_focal: The focal treatment indicator. '1' indicates the treatment group.
- Z_compare: The comparison treatment indicator. '0' indicates the control group.
- X: Pretreatment covariate (if provided).
- loss_diff: The difference in loss between human+AI and human decision
- loss_diff_se: The standard error of the difference in loss
- fn_diff: The difference in false negatives between human+AI and human decision
- fn_diff_se: The standard error of the difference in false negatives
- fp_diff: The difference in false positives between human+AI and human decision
- fp_diff_se: The standard error of the difference in false positives

Examples

```
compute_stats_aipw(
   Y = NCAdata$Y,
   D = ifelse(NCAdata$D == 0, 0, 1),
   Z = NCAdata$Z,
   nuis_funcs = nuis_func,
   true.pscore = rep(0.5, nrow(NCAdata)),
   X = NULL,
   101 = 1
)
```

compute_stats_subgroup

Compute Risk (Human+AI v. Human) for a Subgroup Defined by AI Recommendation

Description

Compute the difference in risk between human+AI and human decision makers, for a subgroup $\{A_i = a\}$, using AIPW estimators. This can be used for computing how the decision maker overrides the AI recommendation.

Usage

```
compute_stats_subgroup(
  Y,
  D,
  Z,
  A,
  a = 1,
```

```
nuis_funcs,
true.pscore = NULL,
X = NULL,
101 = 1
)
```

Arguments

Υ	An observed outcome (binary: numeric vector of 0 or 1).
D	An observed decision (binary: numeric vector of 0 or 1).
Z	A treatment indicator (binary: numeric vector of 0 or 1).
Α	An AI recommendation (binary: numeric vector of 0 or 1).
a	A specific AI recommendation value to create the subset (numeric: 0 or 1).
nuis_funcs	output from compute_nuisance_functions. If NULL, the function will compute the nuisance functions using the provided data. Note that V must be provided if nuis_funcs is NULL.
true.pscore	A vector of true propensity scores (numeric), if available. Optional.
X	Pretreatment covariate used for subgroup analysis (vector). Must be the same length as Y, D, Z, and A if provided. Default is NULL.
101	Ratio of the loss between false positives and false negatives

Value

A tibble the following columns:

- Z_focal: The focal treatment indicator. '1' indicates the treatment group.
- Z_compare: The comparison treatment indicator. '0' indicates the control group.
- X: Pretreatment covariate (if provided).
- loss_diff: The difference in loss between human+AI and human decision
- loss_diff_se: The standard error of the difference in loss
- tn_fn_diff: The difference in true negatives and false negatives between human+AI and human decision
- tn_fn_diff_se: The standard error of the difference in true negatives and false negatives
- tp_diff: The difference in true positives between human+AI and human decision
- tp_diff_se: The standard error of the difference in true positives
- tn_diff: The difference in true negatives between human+AI and human decision
- tn_diff_se: The standard error of the difference in true negatives
- fn_diff: The difference in false negatives between human+AI and human decision
- fn_diff_se: The standard error of the difference in false negatives
- fp_diff: The difference in false positives between human+AI and human decision
- fp_diff_se: The standard error of the difference in false positives

crossfit 35

Examples

```
compute_stats_subgroup(
  Y = NCAdata$Y,
  D = ifelse(NCAdata$D == 0, 0, 1),
  Z = NCAdata$Z,
  A = PSAdata$DMF,
  a = 1,
  nuis_funcs = nuis_func,
  true.pscore = rep(0.5, nrow(NCAdata)),
  X = NULL,
  101 = 1
)
```

crossfit

Crossfitting for nuisance functions

Description

Implement crossfitting with boosting methods and get predicted values for outcome/decision regression or propensity score models

Usage

```
crossfit(data, include_for_fit, form, ...)
```

Arguments

```
data A data.frame or matrix to fit on.

include_for_fit

Boolean vector for whether or not a unit should be included in fitting (e.g. treated/control).

form Formula for outcome regression/propensity score models.

... Additional arguments to be passed to gbm function.
```

Value

A vector of predicted values

36 FTAdata

FTAdata

Interim Dane data with failure to appear (FTA) as an outcome

Description

An interim dataset containing pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The data used for the paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Usage

FTAdata

Format

A data frame with 1891 rows and 19 variables:

Z binary treatment

D ordinal decision

Y outcome

Sex male or female

White white or non-white

SexWhite the interaction between gender and race

Age age

PendingChargeAtTimeOfOffense binary variable for pending charge (felony, misdemeanor, or both) at the time of offense

NCorNonViolentMisdemeanorCharge binary variable for current non-violent felony charge

ViolentMisdemeanorCharge binary variable for current violent misdemeanor charge

ViolentFelonyCharge binary variable for current violent felony charge

NonViolentFelonyCharge binary variable for current non-violent felony charge

PriorMisdemeanorConviction binary variable for prior conviction of misdemeanor

PriorFelonyConviction binary variable for prior conviction of felony

Prior Violent Conviction four-level ordinal variable for prior violent conviction

PriorSentenceToIncarceration binary variable for prior sentence to incarceration

PriorFTAInPast2Years three-level ordinal variable for FTAs from past two years

PriorFTAOlderThan2Years binary variable for FTAs from over two years ago

Staff ReleaseRecommendation four-level ordinal variable for the DMF recommendation

g_legend 37

g_legend

Pulling ggplot legend

Description

Pulling ggplot legend

Usage

g_legend(p)

Arguments

р

A ggplot of which legend should be pulled.

Value

A ggplot legend.

HearingDate

Interim court event hearing date

Description

An Interim Dane court event hearing date of Dane data in factor format. The data used for the paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Usage

HearingDate

Format

A date variable in factor format.

38 NCAdata

hearingdate_synth

Synthetic court event hearing date

Description

A synthetic court event hearing date

Usage

hearingdate_synth

Format

A date variable.

NCAdata

Interim Dane data with new criminal activity (NCA) as an outcome

Description

An interim dataset containing pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The data used for the paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Usage

NCAdata

Format

A data frame with 1891 rows and 19 variables:

Z binary treatment

D ordinal decision

Y outcome

Sex male or female

White white or non-white

SexWhite the interaction between gender and race

Age age

PendingChargeAtTimeOfOffense binary variable for pending charge (felony, misdemeanor, or both) at the time of offense

NCorNonViolentMisdemeanorCharge binary variable for current non-violent felony charge

NVCAdata 39

ViolentMisdemeanorCharge binary variable for current violent misdemeanor charge
ViolentFelonyCharge binary variable for current violent felony charge
NonViolentFelonyCharge binary variable for current non-violent felony charge
PriorMisdemeanorConviction binary variable for prior conviction of misdemeanor
PriorFelonyConviction binary variable for prior conviction of felony
PriorViolentConviction four-level ordinal variable for prior violent conviction
PriorSentenceToIncarceration binary variable for prior sentence to incarceration
PriorFTAInPast2Years three-level ordinal variable for FTAs from past two years
PriorFTAOlderThan2Years binary variable for FTAs from over two years ago
Staff_ReleaseRecommendation four-level ordinal variable for the DMF recommendation

NVCAdata

Interim Dane data with new violent criminal activity (NVCA) as an outcome

Description

An interim dataset containing pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The data used for the paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Usage

NVCAdata

Format

A data frame with 1891 rows and 19 variables:

Z binary treatment

D ordinal decision

Y outcome

Sex male or female

White white or non-white

SexWhite the interaction between gender and race

Age age

PendingChargeAtTimeOfOffense binary variable for pending charge (felony, misdemeanor, or both) at the time of offense

NCorNonViolentMisdemeanorCharge binary variable for current non-violent felony charge ViolentMisdemeanorCharge binary variable for current violent misdemeanor charge

ViolentFelonyCharge binary variable for current violent felony charge

40 PlotAPCE

NonViolentFelonyCharge binary variable for current non-violent felony charge

PriorMisdemeanorConviction binary variable for prior conviction of misdemeanor

PriorFelonyConviction binary variable for prior conviction of felony

PriorViolentConviction four-level ordinal variable for prior violent conviction

PriorSentenceToIncarceration binary variable for prior sentence to incarceration

PriorFTAInPast2Years three-level ordinal variable for FTAs from past two years

PriorFTAOlderThan2Years binary variable for FTAs from over two years ago

Staff_ReleaseRecommendation four-level ordinal variable for the DMF recommendation

PlotAPCE

Plot APCE

Description

See Figure 4 for example.

Usage

```
PlotAPCE(
    res,
    y.max = 0.1,
    decision.labels = c("signature bond", "small cash bond", "large cash bond"),
    shape.values = c(16, 17, 15),
    col.values = c("blue", "black", "red", "brown"),
    label = TRUE,
    r.labels = c("safe", "easily\npreventable", "prevent-\nable", "risky\n"),
    label.position = c("top", "top", "top", "top"),
    top.margin = 0.01,
    bottom.margin = 0.01,
    name.group = c("Overall", "Female", "Male", "Non-white\nMale", "White\nMale"),
    label.size = 4
)
```

Arguments

PlotDIMdecisions 41

```
r.labels Label of each principal stratum.

label.position The position of labels.

top.margin Top margin of labels.

bottom.margin Bottom margin of labels.

name.group A character vector including the labels of five subgroups.

label.size Size of label.
```

Value

A ggplot.

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)</pre>
subgroup_synth <- list(</pre>
  1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
  which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
sample_apce <- CalAPCE(</pre>
  data = synth, mcmc.re = sample_mcmc,
  subgroup = subgroup_synth
)
sample_apce_summary <- APCEsummary(sample_apce[["APCE.mcmc"]])</pre>
PlotAPCE(sample_apce_summary,
  y.max = 0.25, decision.labels = c(
    "signature", "small cash",
    "middle cash", "large cash"
  ), shape.values = c(16, 17, 15, 18),
  col.values = c("blue", "black", "red", "brown", "purple"), label = FALSE
)
```

PlotDIMdecisions

Plot diff-in-means estimates

Description

See Figure 2 for example.

Usage

```
PlotDIMdecisions(
    res,
    y.max = 0.2,
    decision.labels = c("signature bond ", "small cash bond ", "large cash bond"),
    col.values = c("grey60", "grey30", "grey6"),
    shape.values = c(16, 17, 15)
)
```

42 PlotDIMoutcomes

Arguments

```
res A data.frame generated with CalDIMsubgroup.

y.max Maximum value of y-axis.

decision.labels

Labels of decisions (D).

col.values Color of point for each decisions.

shape.values Shape of point for each decisions.
```

Value

A ggplot.

Examples

```
data(synth)
subgroup_synth <- list(
  1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
  which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
res_dec <- CalDIMsubgroup(synth, subgroup = subgroup_synth)
PlotDIMdecisions(res_dec,
  decision.labels = c("signature", "small cash", "middle cash", "large cash"),
  col.values = c("grey60", "grey30", "grey6", "grey1"),
  shape.values = c(16, 17, 15, 18)
)</pre>
```

PlotDIMoutcomes

Plot diff-in-means estimates

Description

See Figure 2 for example.

Usage

```
PlotDIMoutcomes(
    res.fta,
    res.nca,
    res.nvca,
    label.position = c("top", "top", "top"),
    top.margin = 0.01,
    bottom.margin = 0.01,
    y.max = 0.2,
    label.size = 7,
    name.group = c("Overall", "Female", "Male", "Non-white\nMale", "White\nMale")
)
```

PlotFairness 43

Arguments

A data.frame generated with CalDIMsubgroup with Y = FTA. res.fta A data.frame generated with CalDIMsubgroup with Y = NCA. res.nca A data. frame generated with CalDIMsubgroup with Y = NVCA. res.nvca label.position The position of labels. top.margin Top margin of labels. bottom.margin Bottom margin of labels. Maximum value of y-axis. y.max Size of label. label.size A character vector including the labels of five subgroups. name.group

Value

A ggplot.

Examples

```
data(synth)
subgroup_synth <- list(
   1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
   which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
synth_fta <- synth_nca <- synth_nvca <- synth
set.seed(123)
synth_fta$Y <- sample(0:1, 1000, replace = TRUE)
synth_nca$Y <- sample(0:1, 1000, replace = TRUE)
synth_nvca$Y <- sample(0:1, 1000, replace = TRUE)
res_fta <- CalDIMsubgroup(synth_fta, subgroup = subgroup_synth)
res_nca <- CalDIMsubgroup(synth_nvca, subgroup = subgroup_synth)
PlotDIMoutcomes(res_fta, res_nca, res_nvca)</pre>
```

PlotFairness

Plot the principal fairness

Description

See Figure 5 for example.

44 PlotFairness

Usage

```
PlotFairness(
  res,
  top.margin = 0.01,
  y.max = 0.2,
  y.min = -0.1,
  r.labels = c("Safe", "Easily\nPreventable", "Preventable", "Risky"),
  label = TRUE
)
```

Arguments

res	The data frame generated from CalFairness.	
top.margin	The index of subgroups (within the output of CalAPCE/CalAPCE parallel) that corresponds to the protected attributes.	
y.max	Maximum value of y-axis.	
y.min	Minimum value of y-axis.	
r.labels	Label of each principal stratum.	
label	A logical argument whether to specify label.	

Value

A data. frame of the delta.

Examples

```
data(synth)
subgroup_synth <- list(
   1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
   which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
sample_apce <- CalAPCE(
   data = synth, mcmc.re = sample_mcmc, subgroup = subgroup_synth,
   burnin = 0
)
sample_fair <- CalFairness(sample_apce)
PlotFairness(sample_fair, y.max = 0.4, y.min = -0.4, r.labels = c(
   "Safe", "Preventable 1",
   "Preventable 2", "Preventable 3", "Risky"
))</pre>
```

PlotOptimalDecision 45

PlotOptimalDecision

Plot optimal decision

Description

See Figure 6 for example.

Usage

```
PlotOptimalDecision(res, colname.d, idx = NULL)
```

Arguments

res The data frame generated from CalOptimalDecision.

colname.d The column name of decision to be plotted.

idx The row index of observations to be included. The default is all the observations

from the data.

Value

A ggplot.

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
sample_optd <- CalOptimalDecision(
   data = synth, mcmc.re = sample_mcmc,
   c0.ls = seq(0, 5, 1), c1.ls = seq(0, 5, 1),
   size = 1
) # adjust the size
sample_optd$cash <- sample_optd$d1 + sample_optd$d2 + sample_optd$d3
PlotOptimalDecision(sample_optd, "cash")</pre>
```

PlotPS

Plot the proportion of principal strata (R)

Description

See Figure 3 for example.

46 PlotPS

Usage

Arguments

res A data. frame generated with CalPS.

y.min Minimum value of y-axis.y.max Maximum value of y-axis.

col.values Color of point for each principal stratum.

label A logical argument whether to specify label of each principal stratum. The

default is TRUE.

r.labels Label of each principal stratum.

label.position The position of labels.
top.margin Top margin of labels.
bottom.margin Bottom margin of labels.

label.size Size of label.

Value

A ggplot.

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
subgroup_synth <- list(
   1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
   which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
sample_apce <- CalAPCE(
   data = synth, mcmc.re = sample_mcmc,
   subgroup = subgroup_synth
)
sample_ps <- CalPS(sample_apce[["P.R.mcmc"]])
PlotPS(sample_ps, col.values = c("blue", "black", "red", "brown", "purple"), label = FALSE)</pre>
```

PlotSpilloverCRT 47

PlotSpilloverCRT

Plot conditional randomization test

Description

See Figure S8 for example.

Usage

```
PlotSpilloverCRT(res)
```

Arguments

res

A list generated with SpilloverCRT.

Value

A ggplot

Examples

```
data(synth)
data(hearingdate_synth)
crt <- SpilloverCRT(D = synth$D, Z = synth$Z, CourtEvent_HearingDate = hearingdate_synth)
PlotSpilloverCRT(crt)</pre>
```

 ${\tt PlotSpilloverCRTpower} \ \ \textit{Plot power analysis of conditional randomization test}$

Description

See Figure S9 for example.

Usage

```
PlotSpilloverCRTpower(res)
```

Arguments

res

A data.frame generated with SpilloverCRTpower.

48 PlotStackedBar

Value

A ggplot

Examples

```
data(synth)
data(hearingdate_synth)
crt_power <- SpilloverCRTpower(
  D = synth$D, Z = synth$Z,
  CourtEvent_HearingDate = hearingdate_synth,
  size = 1
) # adjust the size
PlotSpilloverCRTpower(crt_power)</pre>
```

PlotStackedBar

Stacked barplot for the distribution of the decision given psa

Description

See Figure 1 for example.

Usage

```
PlotStackedBar(
  data,
  fta.label = "FTAScore",
  nca.label = "NCAScore",
  nvca.label = "NVCAFlag",
  d.colors = c("grey60", "grey30", "grey10"),
  d.labels = c("signature bond", "small cash bond", "large cash bond"),
  legend.position = "none"
)
```

Arguments

data	A data.frame of which columns includes an ordinal decision (D), and psa variables (fta, nca, and nvca).	
fta.label	Column name of fta score in the data. The default is "FTAScore".	
nca.label	Column name of nca score in the data. The default is "NCAScore".	
nvca.label	Column name of nvca score in the data. The default is "NVCAFlag".	
d.colors	The color of each decision.	
d.labels legend.position	The label of each decision.	
	TT1 1.1 C1 1 TT1 1 C 1.1 H H	

The position of legend. The default is "none".

PlotStackedBarDMF 49

Value

A list of three ggplots.

Examples

```
data(psa_synth)
# Control group (PSA not provided)
PlotStackedBar(psa_synth[psa_synth$Z == 0, ], d.colors = c(
  "grey80", "grey60",
  "grey30", "grey10"
), d.labels = c(
  "signature", "small",
  "middle", "large"
))
# Treated group (PSA provided)
{\tt PlotStackedBar(psa\_synth[psa\_synth$Z == 0, ], d.colors = c(} \\
  "grey80", "grey60",
  "grey30", "grey10"
), d.labels = c(
  "signature", "small",
  "middle", "large"
))
```

PlotStackedBarDMF

Stacked barplot for the distribution of the decision given DMF recommendation

Description

See Figure 1 for example.

Usage

```
PlotStackedBarDMF(
  data,
  dmf.label = "dmf",
  dmf.category = NULL,
  d.colors = c("grey60", "grey30", "grey10"),
  d.labels = c("signature bond", "small cash bond", "large cash bond"),
  legend.position = "none"
)
```

Arguments

data A data.frame of which columns includes a binary treatment (Z; PSA provision), an ordinal decision (D), and DMF recommendation.

dmf.label Column name of DMF recommendation in the data. The default is "dmf".

50 PlotUtilityDiff

```
dmf.category
d.colors
The color of each decision.
d.labels
The label of each decision.
legend.position
The position of legend. The default is "none".
```

Value

A list of three ggplots.

Examples

```
data(psa_synth)
PlotStackedBarDMF(psa_synth, dmf.label = "DMF", d.colors = c(
    "grey80",
    "grey60", "grey30", "grey10"
), d.labels = c(
    "signature",
    "small", "middle", "large"
))
```

PlotUtilityDiff

Plot utility difference

Description

See Figure 7 for example.

Usage

```
PlotUtilityDiff(res, idx = NULL)
```

Arguments

res The data frame generated from CalUtilityDiff.

idx The row index of observations to be included. The default is all the observations

from the data.

Value

A ggplot.

PlotUtilityDiffCI 51

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
synth_dmf <- sample(0:1, nrow(synth), replace = TRUE) # random dmf recommendation
sample_utility <- CalOptimalDecision(
   data = synth, mcmc.re = sample_mcmc,
   c0.ls = seq(0, 5, 1), c1.ls = seq(0, 5, 1),
   dmf = synth_dmf, size = 1
) # adjust the size
PlotUtilityDiff(sample_utility)</pre>
```

PlotUtilityDiffCI

Plot utility difference with 95% confidence interval

Description

See Figure S17 for example.

Usage

```
PlotUtilityDiffCI(res)
```

Arguments

res

The second data frame (res.mcmc) generated from CalUtilityDiff(include.utility.diff.mcmc = TRUE).

Value

A ggplot.

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
synth_dmf <- sample(0:1, nrow(synth), replace = TRUE) # random dmf recommendation
sample_utility <- CalOptimalDecision(
   data = synth, mcmc.re = sample_mcmc,
   c0.ls = seq(0, 5, 1), c1.ls = seq(0, 5, 1),
   dmf = synth_dmf, size = 1, # adjust the size
   include.utility.diff.mcmc = TRUE
)
PlotUtilityDiffCI(sample_utility$res.mcmc)</pre>
```

52 plot_agreement

plot_agreement

Visualize Agreement

Description

Visualize the agreement between human decisions and AI recommendations using a difference-inmeans estimator of an indicator $1\{D_i=A_i\}$. Generate a plot based on the overall agreement and subgroup-specific agreement.

Usage

```
plot_agreement(
   Y,
   D,
   Z,
   A,
   subgroup1,
   subgroup2,
   label.subgroup1 = "Subgroup 1",
   label.subgroup2 = "Subgroup 2",
   x.order = NULL,
   p.title = NULL,
   p.lb = -0.3,
   p.ub = 0.3,
   y.lab = "Impact of PSA"
)
```

Arguments

Υ	An observed outcome (binary: numeric vector of 0 or 1).	
D	An observed decision (binary: numeric vector of 0 or 1).	
Z	A treatment indicator (binary: numeric vector of 0 or 1).	
A	An AI recommendation (binary: numeric vector of 0 or 1).	
subgroup1	A pretreatment covariate used for subgroup analysis (vector).	
subgroup2	A pretreatment covariate used for subgroup analysis (vector).	
label.subgroup1		
	A label for subgroup1 (character). Default "Subgroup 1".	
label.subgroup2		
	A label for subgroup2 (character). Default "Subgroup 2".	
x.order	An order for the x-axis (character vector). Default NULL.	
p.title	A title for the plot (character). Default NULL.	
p.lb	A lower bound for the y-axis (numeric). Default -0.3.	
p.ub	An upper bound for the y-axis (numeric). Default 0.3.	
y.lab	A label for the y-axis (character). Default "Impact of PSA".	

plot_diff_ai_aipw 53

Value

A ggplot object.

Examples

```
plot_agreement(
    Y = NCAdata$Y,
    D = ifelse(NCAdata$D == 0, 0, 1),
    Z = NCAdata$Z,
    A = PSAdata$DMF,
    subgroup1 = ifelse(NCAdata$White == 1, "White", "Non-white"),
    subgroup2 = ifelse(NCAdata$Sex == 1, "Male", "Female"),
    label.subgroup1 = "Race",
    label.subgroup2 = "Gender",
    x.order = c("Overall", "Non-white", "White", "Female", "Male")
)
```

plot_diff_ai_aipw

Visualize Difference in Risk (AI v. Human)

Description

Visualize the difference in risk between AI and human decision makers using AIPW estimators. Generate a plot based on the overall and subgroup-specific results.

Usage

```
plot_diff_ai_aipw(
 Υ,
 D,
 Ζ,
 V = NULL
 Α,
 z_{compare} = 0,
 101 = 1,
  nuis_funcs = NULL,
  nuis_funcs_ai = NULL,
  true.pscore = NULL,
  subgroup1,
  subgroup2,
  label.subgroup1 = "Subgroup 1",
  label.subgroup2 = "Subgroup 2",
  x.order = NULL,
  zero.line = TRUE,
  arrows = TRUE,
 y.min = -Inf,
  p.title = NULL,
```

54 plot_diff_ai_aipw

```
p.lb = -1,
p.ub = 1,
y.lab = "PSA versus Human",
p.label = c("PSA worse", "PSA better")
)
```

Arguments

Υ	An observed outcome (binary: numeric vector of 0 or 1).
D	An observed decision (binary: numeric vector of 0 or 1).
Z	A treatment indicator (binary: numeric vector of 0 or 1).
٧	A matrix of pretreatment covariates (numeric matrix). Optional.
Α	An observed AI recommendation (binary: numeric vector of 0 or 1).
z_compare	A compare treatment indicator (numeric). Default 0.
101	Ratio of the loss between false positives and false negatives. Default 1.
nuis_funcs	output from <code>compute_nuisance_functions</code> . If NULL, the function will compute the nuisance functions using the provided data. Note that V must be provided if <code>nuis_funcs</code> is NULL.
nuis_funcs_ai	<pre>output from compute_nuisance_functions_ai</pre>
true.pscore	A vector of true propensity scores (numeric), if available. Optional.
subgroup1	A pretreatment covariate used for subgroup analysis (vector).
subgroup2	A pretreatment covariate used for subgroup analysis (vector).
label.subgroup1	
label.subgroup2	A label for subgroup1 (character). Default "Subgroup 1".
Tabel. Subgi oupz	A label for subgroup2 (character). Default "Subgroup 2".
x.order	An order for the x-axis (character vector). Default NULL.
zero.line	A logical indicating whether to include a zero line. Default TRUE.
arrows	A logical indicating whether to include arrows. Default TRUE.
y.min	A lower bound for the y-axis (numeric). Default -Inf.
p.title	A title for the plot (character). Default NULL.
p.lb	A lower bound for the y-axis (numeric). Default -0.2.
p.ub	An upper bound for the y-axis (numeric). Default 0.2.
y.lab	A label for the y-axis (character). Default "PSA versus Human".
p.label	A vector of two labels for the annotations (character). Default c("PSA harms", "PSA helps").

Value

A ggplot object.

plot_diff_human 55

Examples

```
plot_diff_ai_aipw(
  Y = NCAdata$Y,
  D = ifelse(NCAdata$D == 0, 0, 1),
  Z = NCAdata$Z,
  A = PSAdata$DMF,
  z_{compare} = 0,
  nuis_funcs = nuis_func,
  nuis_funcs_ai = nuis_func_ai,
  true.pscore = rep(0.5, nrow(NCAdata)),
  101 = 1,
  subgroup1 = ifelse(NCAdata$White == 1, "White", "Non-white"),
  subgroup2 = ifelse(NCAdata$Sex == 1, "Male", "Female"),
  label.subgroup1 = "Race",
  label.subgroup2 = "Gender",
  x.order = c("Overall", "Non-white", "White", "Female", "Male"),
  zero.line = TRUE, arrows = TRUE, y.min = -Inf,
  p.title = NULL, p.lb = -0.3, p.ub = 0.3
)
```

plot_diff_human

Visualize Difference in Risk (Human+AI v. Human)

Description

Visualize the the difference in risk between human+AI and human decision makers using difference-in-means estimators. Generate a plot based on the overall agreement and subgroup-specific agreement.

Usage

```
plot_diff_human(
 Υ,
 D,
 Ζ,
 101 = 1,
  subgroup1,
  subgroup2,
  label.subgroup1 = "Subgroup 1",
  label.subgroup2 = "Subgroup 2",
 x.order = NULL,
 p.title = NULL,
 p.1b = -1,
 p.ub = 1,
 y.lab = "Impact of PSA",
  p.label = c("PSA harms", "PSA helps")
)
```

56 plot_diff_human

Arguments

Υ	An observed outcome (binary: numeric vector of 0 or 1).	
D	An observed decision (binary: numeric vector of 0 or 1).	
Z	A treatment indicator (binary: numeric vector of 0 or 1).	
101	Ratio of the loss between false positives and false negatives. Default 1.	
subgroup1	A pretreatment covariate used for subgroup analysis (vector).	
subgroup2	A pretreatment covariate used for subgroup analysis (vector).	
label.subgroup1	I	
	A label for subgroup1 (character). Default "Subgroup 1".	
label.subgroup2		
	A label for subgroup2 (character). Default "Subgroup 2".	
x.order	An order for the x-axis (character vector). Default NULL.	
p.title	A title for the plot (character). Default NULL.	
p.1b	A lower bound for the y-axis (numeric). Default -1.	
p.ub	An upper bound for the y-axis (numeric). Default 1.	
y.lab	A label for the y-axis (character). Default "Impact of PSA".	
p.label	A vector of two labels for the annotations (character). Default $c("PSA harms", "PSA helps")$.	

Value

A ggplot object.

Examples

```
plot_diff_human(
    Y = NCAdata$Y,
    D = ifelse(NCAdata$D == 0, 0, 1),
    Z = NCAdata$Z,
    l01 = 1,
    subgroup1 = ifelse(NCAdata$White == 1, "White", "Non-white"),
    subgroup2 = ifelse(NCAdata$Sex == 1, "Male", "Female"),
    label.subgroup1 = "Race",
    label.subgroup2 = "Gender",
    x.order = c("Overall", "Non-white", "White", "Female", "Male"),
    p.title = NULL, p.lb = -0.3, p.ub = 0.3
)
```

Description

Visualize the difference in risk between human+AI and human decision makers using AIPW estimators. Generate a plot based on the overall agreement and subgroup-specific agreement.

Usage

```
plot_diff_human_aipw(
 Υ,
 D,
 Ζ,
 V = NULL,
 101 = 1,
 nuis_funcs = NULL,
  true.pscore = NULL,
  subgroup1,
  subgroup2,
  label.subgroup1 = "Subgroup 1",
  label.subgroup2 = "Subgroup 2",
 x.order = NULL,
 p.title = NULL,
 p.1b = -1,
 p.ub = 1,
 y.lab = "Impact of PSA",
 p.label = c("PSA harms", "PSA helps")
)
```

Arguments

Υ	An observed outcome (binary: numeric vector of 0 or 1).	
D	An observed decision (binary: numeric vector of 0 or 1).	
Z	A treatment indicator (binary: numeric vector of 0 or 1).	
V	A matrix of pretreatment covariates (numeric matrix). Optional.	
101	Ratio of the loss between false positives and false negatives. Default 1.	
nuis_funcs	output from compute_nuisance_functions. If NULL, the function will compute the nuisance functions using the provided data. Note that V must be provided if nuis_funcs is NULL.	
true.pscore	A vector of true propensity scores (numeric), if available. Optional.	
subgroup1	A pretreatment covariate used for subgroup analysis (vector).	
subgroup2	A pretreatment covariate used for subgroup analysis (vector).	
label.subgroup1		
	A label for subgroup1 (character). Default "Subgroup 1".	

58 plot_diff_subgroup

label.subgroup2		
	A label for subgroup2 (character). Default "Subgroup 2".	
x.order	An order for the x-axis (character vector). Default NULL.	
p.title	A title for the plot (character). Default NULL.	
p.1b	A lower bound for the y-axis (numeric). Default -1.	
p.ub	An upper bound for the y-axis (numeric). Default 1.	
y.lab	A label for the y-axis (character). Default "Impact of PSA".	
p.label	A vector of two labels for the annotations (character). Default $c("PSA\ harms", "PSA\ helps")$.	

Value

A ggplot object.

Examples

```
plot_diff_human_aipw(
    Y = NCAdata$Y,
    D = ifelse(NCAdata$D == 0, 0, 1),
    Z = NCAdata$Z,
    nuis_funcs = nuis_func,
    true.pscore = rep(0.5, nrow(NCAdata)),
    l01 = 1,
    subgroup1 = ifelse(NCAdata$White == 1, "White", "Non-white"),
    subgroup2 = ifelse(NCAdata$Sex == 1, "Male", "Female"),
    label.subgroup1 = "Race",
    label.subgroup2 = "Gender",
    x.order = c("Overall", "Non-white", "White", "Female", "Male"),
    p.title = NULL, p.lb = -0.3, p.ub = 0.3
)
```

Visualize Difference in Risk (Human+AI v. Human) for a Subgroup Defined by AI Recommendation

Description

Visualize the the difference in risk between human+AI and human decision makers using AIPW estimators, for a subgroup defined by AI recommendation. Generate a plot based on the overall agreement and subgroup-specific agreement.

plot_diff_subgroup 59

Usage

```
plot_diff_subgroup(
 Υ,
 D,
 Ζ,
 Α,
 a = 1,
 V = NULL,
 101 = 101,
  nuis_funcs = NULL,
  true.pscore = NULL,
  subgroup1,
  subgroup2,
  label.subgroup1 = "Subgroup 1",
  label.subgroup2 = "Subgroup 2",
 x.order = NULL,
 p.title = NULL,
 p.1b = -1,
 p.ub = 1,
 y.lab = "Impact of PSA",
 p.label = c("Human correct", "PSA correct"),
 label = "TNP - FNP",
 metrics = c("Misclassification Rate", "False Negative Proportion",
    "False Positive Proportion")
)
```

Arguments

Υ	An observed outcome (binary: numeric vector of 0 or 1).
D	An observed decision (binary: numeric vector of 0 or 1).
Z	A treatment indicator (binary: numeric vector of 0 or 1).
Α	An AI recommendation (binary: numeric vector of 0 or 1).
a	A specific AI recommendation value to create the subset (numeric: 0 or 1).
V	A matrix of pretreatment covariates (numeric matrix). Optional.
101	Ratio of the loss between false positives and false negatives. Default 1.
nuis_funcs	output from compute_nuisance_functions. If NULL, the function will compute the nuisance functions using the provided data. Note that V must be provided if nuis_funcs is NULL.
true.pscore	A vector of true propensity scores (numeric), if available. Optional.
subgroup1	A pretreatment covariate used for subgroup analysis (vector).
subgroup2	A pretreatment covariate used for subgroup analysis (vector).
label.subgroup	
	A label for subgroup1 (character). Default "Subgroup 1".
label.subgroup2	
	A label for subgroup2 (character). Default "Subgroup 2".

plot_preference

x.order	An order for the x-axis (character vector). Default NULL.
p.title	A title for the plot (character). Default NULL.
p.1b	A lower bound for the y-axis (numeric). Default -1.
p.ub	An upper bound for the y-axis (numeric). Default 1.
y.lab	A label for the y-axis (character). Default "Impact of PSA".
p.label	A vector of two labels for the annotations (character). Default $c("Human\ correct", "PSA\ correct")$.
label	A label for the plot (character). Default "TNP - FNP".
metrics	A vector of metrics to include in the plot (character). Default c("Misclassification Rate", "False Negative Proportion", "False Positive Proportion").

Value

A ggplot object.

Examples

```
plot_diff_subgroup(
  Y = NCAdata$Y,
  D = ifelse(NCAdata$D == 0, 0, 1),
  Z = NCAdata$Z,
  A = PSAdata$DMF,
  a = 1,
  101 = 1,
  nuis_funcs = nuis_func,
  true.pscore = rep(0.5, nrow(NCAdata)),
subgroup1 = ifelse(NCAdata$White == 1, "White", "Non-white"),
  subgroup2 = ifelse(NCAdata$Sex == 1, "Male", "Female"),
  label.subgroup1 = "Race",
  label.subgroup2 = "Gender",
  x.order = c("Overall", "Non-white", "White", "Female", "Male"),
  p.title = NULL, p.lb = -0.5, p.ub = 0.5,
  label = "TNP - FNP",
 metrics = c("True Negative Proportion (TNP)", "False Negative Proportion (FNP)", "TNP - FNP")
)
```

plot_preference

Visualize Preference

Description

Compute the difference in risk between AI and human decision makers using AIPW estimators over a set of loss ratios, and then visualize when we prefer human over AI decision makers. Generate a plot based on the overall and subgroup-specific results.

plot_preference 61

Usage

```
plot_preference(
 Υ,
 D,
 Ζ,
 V = NULL
 Α,
 z_{compare} = 0,
  true.pscore = NULL,
 nuis_funcs = NULL,
 nuis_funcs_ai = NULL,
  101_{seq} = 10^{seq}(-2, 2, length.out = 100),
  alpha = 0.05,
  subgroup1,
  subgroup2,
  label.subgroup1 = "Subgroup 1",
  label.subgroup2 = "Subgroup 2",
 x.order = NULL,
  p.title = NULL,
  legend.position = "none",
 p.label = c("AI-alone preferred", "Human-alone preferred", "Ambiguous")
)
```

Arguments Y

•	The control of the control (chinal), humanitative (control of the control of the	
D	An observed decision (binary: numeric vector of 0 or 1).	
Z	A treatment indicator (binary: numeric vector of 0 or 1).	
V	A matrix of pretreatment covariates (numeric matrix). Optional.	
A	An observed AI recommendation (binary: numeric vector of 0 or 1).	
z_compare	A compare treatment indicator (numeric). Default 0.	
true.pscore	A vector of true propensity scores (numeric), if available. Optional.	
nuis_funcs	output from <code>compute_nuisance_functions</code> . If NULL, the function will compute the nuisance functions using the provided data. Note that V must be provided if <code>nuis_funcs</code> is <code>NULL</code> .	
nuis_funcs_ai	<pre>output from compute_nuisance_functions_ai</pre>	
101_seq	A candidate list of ratio of the loss between false positives and false negatives. Default $10^seq(-2, 2, length.out = 100)$.	
alpha	A significance level (numeric). Default 0.05.	
subgroup1	A pretreatment covariate used for subgroup analysis (vector).	
subgroup2	A pretreatment covariate used for subgroup analysis (vector).	
label.subgroup1		
	A label for subgroup1 (character). Default "Subgroup 1".	
label.subgroup2		
	A label for subgroup 2 (character). Default "Subgroup 2".	
	Z Z Z Z Z Z Z Z Z Z Z Z Z	

An observed outcome (binary: numeric vector of 0 or 1).

PSAdata PSAdata

```
x.order An order for the x-axis (character vector). Default NULL.

p.title A title for the plot (character). Default NULL.

legend.position

Position of the legend (character).

p.label A vector of three labels for the annotations (character). Default c("AI-alone preferred", "Human-alone preferred", "Ambiguous").
```

Value

A ggplot object.

Examples

```
plot_preference(
 Y = NCAdata$Y,
 D = ifelse(NCAdata$D == 0, 0, 1),
 Z = NCAdata$Z,
 A = PSAdata$DMF,
 z_{compare} = 0,
 nuis_funcs = nuis_func,
 nuis_funcs_ai = nuis_func_ai,
 true.pscore = rep(0.5, nrow(NCAdata)),
 101_{seq} = 10^{seq}(-2, 2, length.out = 10),
 alpha = 0.05,
 subgroup1 = ifelse(NCAdata$White == 1, "White", "Non-white"),
 subgroup2 = ifelse(NCAdata$Sex == 1, "Male", "Female"),
 label.subgroup1 = "Race",
 label.subgroup2 = "Gender"
 x.order = c("Overall", "Non-white", "White", "Female", "Male"),
 p.title = NULL, legend.position = "none",
 p.label = c("AI-alone preferred", "Human-alone preferred", "Ambiguous")
)
```

PSAdata

Interim Dane PSA data

Description

An interim dataset containing a binary treatment (Z), ordinal decision (D), three PSA variables (FTAScore, NCAScore, and NVCAFlag), DMF recommendation, and two pre-treatment covariates (binary indicator for gender; binary indicator for race). The data used for the paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Usage

PSAdata

psa_synth 63

Format

A data frame with 1891 rows and 7 variables:

Z binary treatment

D ordinal decision

FTAScore FTA score

NCAScore NCA score

NVCAFlag NVCA flag

DMF DMF recommendation

Sex male or female

White white or non-white

psa_synth

Synthetic PSA data

Description

A synthetic dataset containing a binary treatment (Z), ordinal decision (D), three PSA variables (FTAScore, NCAScore, and NVCAFlag), and DMF recommendation.

Usage

psa_synth

Format

A data frame with 1000 rows and 4 variables:

Z binary treatment

D ordinal decision

FTAScore FTA score

NCAScore NCA score

NVCAFlag NVCA flag

DMF DMF recommendation

SpilloverCRTpower

SpilloverCRT

Conduct conditional randomization test

Description

See S3.1 for more details.

Usage

```
SpilloverCRT(D, Z, CourtEvent_HearingDate, n = 100, seed.number = 12345)
```

Arguments

D A numeric vector of judge's decision.

Z A numeric vector of treatment variable.

CourtEvent_HearingDate

The court event hearing date.

n Number of permutations.

seed.number An integer for random number generator.

Value

A list of the observed and permuted test statistics and its p-value.

Examples

```
data(synth)
data(hearingdate_synth)
crt <- SpilloverCRT(D = synth$D, Z = synth$Z, CourtEvent_HearingDate = hearingdate_synth)</pre>
```

SpilloverCRTpower

Conduct power analysis of conditional randomization test

Description

See \$3.2 for more details.

synth 65

Usage

```
SpilloverCRTpower(
   D,
   Z,
   CourtEvent_HearingDate,
   n = 4,
   m = 4,
   size = 2,
   cand_omegaZtilde = seq(-1.5, 1.5, by = 0.5)
)
```

Arguments

D A numeric vector of judge's decision.

Z A numeric vector of treatment variable.

CourtEvent_HearingDate
The court event hearing date.

n Number of permutations.

m Number of permutations.

size The number of parallel computing. The default is 2.

cand_omegaZtilde
Candidate values

Value

A data.frame of the result of power analysis.

Examples

```
data(synth)
data(hearingdate_synth)
crt_power <- SpilloverCRTpower(
  D = synth$D, Z = synth$Z,
  CourtEvent_HearingDate = hearingdate_synth,
  size = 1
) # adjust the size</pre>
```

synth

Synthetic data

Description

A synthetic dataset containing pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y).

table_agreement

Usage

synth

Format

A data frame with 1000 rows and 11 variables:

Z binary treatment

D ordinal decision

Y outcome

Sex male or female

White white or non-white

Age age

CurrentViolentOffense binary variable for current violent offense

PendingChargeAtTimeOfOffense binary variable for pending charge (felony, misdemeanor, or both) at the time of offense

PriorMisdemeanorConviction binary variable for prior conviction of misdemeanor

PriorFelonyConviction binary variable for prior conviction of felony

Prior Violent Conviction four-level ordinal variable for prior violent conviction

table_agreement

Table of Agreement

Description

Estimate the impact of AI recommendations on the agreement between human decisions and AI recommendations using a difference-in-means estimator of an indicator $1\{D_i=A_i\}$. Generate a table based on the overall agreement and subgroup-specific agreement.

Usage

```
table_agreement(
   Y,
   D,
   Z,
   A,
   subgroup1,
   subgroup2,
   label.subgroup1 = "Subgroup 1",
   label.subgroup2 = "Subgroup 2"
)
```

table_agreement 67

Arguments

Υ	An observed outcome (binary: numeric vector of 0 or 1).	
D	An observed decision (binary: numeric vector of 0 or 1).	
Z	A treatment indicator (binary: numeric vector of 0 or 1).	
A	An AI recommendation (binary: numeric vector of 0 or 1).	
subgroup1	A pretreatment covariate used for subgroup analysis (vector).	
subgroup2	A pretreatment covariate used for subgroup analysis (vector).	
label.subgroup1		
	A label for subgroup1 (character). Default "Subgroup 1".	
label.subgroup2		
	A label for subgroup2 (character). Default "Subgroup 2".	

Value

A tibble with the following columns:

- cov: Subgroup label.
- X: Subgroup value.
- agree_diff: Difference in agreement between human decisions and AI recommendations.
- agree_diff_se: Standard error of the difference in agreement.
- ci_lb: Lower bound of the 95% confidence interval.
- ci_ub: Upper bound of the 95% confidence interval.

Examples

```
table_agreement(
  Y = NCAdata$Y,
  D = ifelse(NCAdata$D == 0, 0, 1),
  Z = NCAdata$Z,
  A = PSAdata$DMF,
  subgroup1 = ifelse(NCAdata$White == 1, "White", "Non-white"),
  subgroup2 = ifelse(NCAdata$Sex == 1, "Male", "Female"),
  label.subgroup1 = "Race",
  label.subgroup2 = "Gender"
)
```

TestMonotonicityRE

TestMonotonicity

Test monotonicity

Description

Test monotonicity using frequentist analysis

Usage

68

TestMonotonicity(data)

Arguments

data

A data.frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" respectively.

Value

Message indicating whether the monotonicity assumption holds.

Examples

```
data(synth)
TestMonotonicity(synth)
```

TestMonotonicityRE

Test monotonicity with random effects

Description

Test monotonicity using frequentist analysis with random effects for the hearing date of the case.

Usage

TestMonotonicityRE(data, fixed, random)

Arguments

data A data. frame or matrix of which columns consists of pre-treatment covariates,

a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y"

respectively.

fixed A formula for the fixed-effects part of the model to fit.

random A formula for the random-effects part of the model to fit.

TestMonotonicityRE 69

Value

Message indicating whether the monotonicity assumption holds.

References

Imai, K., Jiang, Z., Greiner, D.J., Halen, R., and Shin, S. (2023). "Experimental evaluation of algorithm-assisted human decision-making: application to pretrial public safety assessment." Journal of the Royal Statistical Society: Series A. <DOI:10.1093/jrsssa/qnad010>.

Examples

Index

* datasets	compute_stats_subgroup, 33
FTAdata, 36	crossfit, 35
HearingDate, 37	FT. 1
hearingdate_synth,38	FTAdata, 36
NCAdata, 38	g_legend, 37
NVCAdata, 39	gbm (crossfit), 35
psa_synth, 63	gbiii (Ci 03311t), 35
PSAdata, 62	HearingDate, 37
synth, 65	hearingdate_synth, 38
* package	
aihuman-package, 3	NCAdata, 38
, ,	NVCAdata, 39
AiEvalmcmc, 5	1
aihuman (aihuman-package), 3	plot_agreement, 52
aihuman-package, 3	plot_diff_ai_aipw, 53
APCEsummary, 7	plot_diff_human, 55
APCEsummaryipw, 8	plot_diff_human_aipw, 57
• • •	plot_diff_subgroup, 58
BootstrapAPCEipw, 9	plot_preference, 60
BootstrapAPCEipwRE, 10	PlotAPCE, 40
BootstrapAPCEipwREparallel, 12	PlotDIMdecisions, 41
, , ,	PlotDIMoutcomes, 42
CalAPCE, 13	PlotFairness, 43
CalAPCEipw, 15	PlotOptimalDecision, 45
CalAPCEipwRE, 16	PlotPS, 45
CalAPCEparallel, 18	PlotSpilloverCRT, 47
CalDelta, 20	PlotSpilloverCRTpower, 47
CalDIM, 21	PlotStackedBar, 48
CalDIMsubgroup, 22	PlotStackedBarDMF, 49
CalFairness, 22	PlotUtilityDiff, 50
CalOptimalDecision, 23	PlotUtilityDiffCI, 51
CalPS, 25	psa_synth, 63
compute_bounds_aipw, 26	PSAdata, 62
compute_nuisance_functions, 26, 27, 32,	Coddlaws CDT (4
34, 54, 57, 59, 61	SpilloverCRT, 64
compute_nuisance_functions_ai, 26, 29,	SpilloverCRTpower, 64
54, 61	synth, 65
compute_stats, 30	table_agreement, 66
compute_stats_agreement, 31	TestMonotonicity, 68
compute_stats_aipw, 32	TestMonotonicityRE, 68
Compace_3 tats_aipw, 32	reseriorio contect cyric, 00