
BRoadly Useful Convenient and Efficient R functions that BRing Users Concise and Elegant R data analyses.
This package includes easy-to-use functions for:

Bruce H. W. S. Bao 包寒吴霜
Chinese Documentation for bruceR: I. Overview
Chinese Documentation for bruceR: II. FAQ
Please always set dep=TRUE to install ALL
package dependencies for FULL features!
## Method 1: Install from CRAN
install.packages("bruceR", dep=TRUE) # dependencies=TRUE
## Method 2: Install from GitHub
install.packages("devtools")
devtools::install_github("psychbruce/bruceR", dep=TRUE, force=TRUE)Tips:
bruceR depends on many important R packages.
Loading bruceR with library(bruceR) will
also load these R packages for you:
[Data]:
data.table:
Advanced data.frame with higher efficiency.dplyr:
Data manipulation and processing.tidyr:
Data cleaning and reshaping.stringr:
Toolbox for string operation (with regular expressions).ggplot2:
Data visualization.[Stat]:
emmeans:
Estimates of marginal means and multiple contrasts.lmerTest:
Linear mixed effects modeling (multilevel modeling).effectsize:
Effect sizes and standardized parameters.performance:
Performance of regression models.interactions:
Interaction and simple effect analyses.bruceRBasic R Programming
cc() (suggested)set.wd() (alias: set_wd())
(suggested)import(), export() (suggested)pkg_depend()formatF(), formatN()print_table()Print(), Glue(), Run()%^%%notin%%allin%, %anyin%, %nonein%,
%partin%Multivariate Computation
add(), added() (suggested).sum(), .mean() (suggested)SUM(), MEAN(), STD(),
MODE(), COUNT(), CONSEC()RECODE(), RESCALE()LOOKUP()Reliability and Factor Analyses
Alpha()EFA() / PCA()CFA()Descriptive Statistics and Correlation Analyses
Describe()Freq()Corr()cor_diff()cor_multilevel()T-Test, Multi-Factor ANOVA, Simple-Effect Analysis, and Post-Hoc Multiple Comparison
TTEST()MANOVA()EMMEANS()Tidy Report of Regression Models
model_summary() (suggested)lavaan_summary()GLM_summary()HLM_summary()HLM_ICC_rWG()regress()Mediation and Moderation Analyses
PROCESS() (suggested)med_summary()lavaan_summary()Additional Toolbox for Statistics and Graphics
grand_mean_center()group_mean_center()ccf_plot()granger_test()granger_causality()theme_bruce()show_colors()For some functions, the results can be saved to Microsoft Word using
the file argument.
| bruceR Function | Output: R Console | Output: MS Word |
|---|---|---|
print_table() |
√ | √ (basic usage) |
Describe() |
√ | √ |
Freq() |
√ | √ |
Corr() |
√ | √ (suggested) |
Alpha() |
√ | (unnecessary) |
EFA() /
PCA() |
√ | √ |
CFA() |
√ | √ |
TTEST() |
√ | √ |
MANOVA() |
√ | √ |
EMMEANS() |
√ | √ |
PROCESS() |
√ | √ (partial) |
model_summary() |
√ | √ (suggested) |
med_summary() |
√ | √ |
lavaan_summary() |
√ | √ |
GLM_summary() |
√ | |
HLM_summary() |
√ | |
HLM_ICC_rWG() |
√ | (unnecessary) |
granger_test() |
√ | √ |
granger_causality() |
√ | √ |
Examples:
## Correlation analysis (and descriptive statistics)
Corr(airquality, file="cor.doc")
## Regression analysis
lm1 = lm(Temp ~ Month + Day, data=airquality)
lm2 = lm(Temp ~ Month + Day + Wind + Solar.R, data=airquality)
model_summary(list(lm1, lm2), file="reg.doc")
model_summary(list(lm1, lm2), std=TRUE, file="reg_std.doc")library(bruceR)
## Overview
help("bruceR")
help(bruceR)
?bruceR
## See help pages of functions
## (use `?function` or `help(function)`)
?cc
?add
?.mean
?set.wd
?import
?export
?Describe
?Freq
?Corr
?Alpha
?MEAN
?RECODE
?TTEST
?MANOVA
?EMMEANS
?PROCESS
?model_summary
?lavaan_summary
?GLM_summary
?HLM_summary
...