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Abstract

The literature on p-hacking primarily highlights its prevalence and the need to

pay attention to the practical significance of each regressor. A new R package,

‘practicalSigni,’ reports 13 indexes for p regressors called m1 to m13. The follow-

ing methods are missing from the literature. (m6) Generalized partial correlation

coefficients (GPCC). (m7) extending Psychologists’ “Effect Sizes” to two or more

regressors. (m8, m9) Two kernel regression partial derivatives from np and NNS

packages. (m10) The NNS.boost function of NNS. (m11) re-imagines the regression

as a cooperative game (Shapley Value) of forecasting. Two random forest feature im-

portance measures (m12, m13) use out-of-bin (OOB) calculations. Since regression is

important for all quantitative sciences, my package offers simple few-line commands

like practicalSigni::reportRank(y,X) to summarize the ranks by eight newer non-

parametric methods (m6 to m13). An example shows why misleading p-values must
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be supplemented by our eight methods to reveal that racism is the least significant

regressor explaining Boston home values.

1 P-hacking and Practical Significance

A p-value less than 0.05 often identifies statistically significant scientific explanations of

phenomena. P-hacking occurs when researchers game the estimation to achieve the 0.05

threshold and sell practically insignificant explanations as significant. The p-hacking prob-

lem is recently discussed in a special issue of the American Statistician, having 43 papers.

Vinod (2022b) reports a p-hacking example in econometrics by Khan et al. (2020).

Let us consider a usual ordinary least squares (OLS) linear regression,

yt = α0 + Σp
i=1αixit + ϵt, ϵt ∼ N(0, σ2), (1)

where t = 1, . . . T . Assume that research seeks to reveal the relative importance of the

p regressors in explaining y. The first measure (m1) of relative importance is a set of

absolute values (|α̂i|, i = 0, 1, . . . p). Since (|α̂i|) are sensitive to units of measurement,

their ranking need not indicate relative importance.

The linear functional form in (1) is too restrictive and subject to specification errors.

Hence we use kernel regression based on the kernel density algorithm here. The empirical

cumulative distribution function (ecdf) provides F (x). The density f(x) = (dF/dx) is the

derivative of the ecdf. One definition of a numerical derivative in calculus is the limit of

the central difference. Accordingly, the density is:

f(x) = lim
h→0

(
1

h

)[
F

(
x+

h

2

)
− F

(
x− h

2

)]
. (2)

In the 1950s, Rosenblatt suggested replacing the central difference in (2) with a kernel

weight function. His kernel weights are positive and must integrate (add up) to unity. A

normal kernel yields convenient weights wt K(wt) ∼ N(0, σ2). The standard algorithms for
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density estimation use wt =
(xt−x)

h
, where x is the point at which the density is evaluated,

and xt are nearby observed data points defined on an expanded grid of points. See Vinod

(2021) for grid expansion details used in R.

Let X denotes a matrix of all regressors in (1). Let f(y,X) denote the joint density

of (y,X) variables and f(X) denote the joint density of regressors, where we use a generic

notation f(.) for densities. The left-hand side of (1) is a conditional mean E(y|X) =

f(y,X)/f(X). Kernel regression applies the kernel algorithm to the two densities involved

in E(y|X). The resulting regression equation (in simplified notation) is

yt = R(X)t + ϵt, R(x) =

∑T
t=1 ytK(wt)∑T
t=1 K(wt)

. (3)

Since R(X) in (3) does not contain any regression parameters αi, it is called nonparametric

regression. The conditional expectation function E(y|X) = R(X) based on the kernel

regression algorithm traces a freehand curve very close to the data values of y. The main

appeal of kernel regression is its superior fit compared to the OLS.

Our second commonly reported measure (m2) is the value of t-statistic which is not

sensitive to units. Its absolute value (|ti|) is relevant when the sign of the coefficient

does not matter. For example, if the researcher wishes to show that xi increases y, and

the coefficient is negative with ti < 0, then the unexpected sign indicates that what the

researcher wishes to establish is rejected by the data. Reporting all p-values is equivalent

to t-stats, except that p-values hide “wrong” signs of coefficient estimates.

Our third measure (m3) overcomes the units problem of (|α̂i|) by re-scaling all variables

to have zero means and unit standard deviations. Re-scaled coefficients used to be called

‘beta coefficients’ or (β̂i). If the sign of the coefficient does not matter, (m3) becomes the

absolute value (|β̂i|) as a measure of the importance of xi.

The commonly used fourth method (m4) for assessing regressor importance is the size

of Pearson correlation coefficient, |ry,xi| =
√
R2, where R2 is the coefficient of determination

in regressing y on xi. The sign of the square root ry,xi is that of the covariance cov(y, xi).
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If the sign matters in the problem at hand, a “wrong” sign of ry,xi casts doubt on the

researcher’s claim. The first limitation of ry,xi is that it ignores nonlinear dependence.

When one uses nonlinear nonparametric kernel regression (3), the magnitude of the R2

depends on the regression direction (regress y on xi or regress of xi on y).

Vinod (2014) defines the square roots of the two R2 values as elements of the asymmet-

ric matrix R∗ of generalized correlation coefficients. Kernel regression of y on xi from the

square root of the R2 denoted by r∗y|xi ̸= r∗xi|y overcomes the linearity assumption and is

called (m5) here. The R package generalCorr offers a convenient function depMeas(y,x)

for computing (m5). The second limitation of Pearson correlation (ry,xi) is that the coeffi-

cient is between only two variables (y, xi), ignoring all others. The method (m5) overcomes

linearity but continues to measure only two variables at a time.

Now we turn to the multivariate extension of (rxi,xj). The textbook formula for partial

correlation coefficient between (X1, X2) after removing the effect of (X3) is:

r12;3 =
r12 − r13r23√

(1− r213)
√
(1− r223)

. (4)

The numerator (r12− r13r23) has the linear correlation coefficient between X1 and X2 after

subtracting the linear effect of X3 on both X1 and X2 defined in terms of regression resid-

uals. The denominator does a normalization to obtain a scale-free correlation coefficient.

Vinod (2021) generalizes a multivariate version of (4) by replacing various correlations with

the square roots of R2 from appropriate nonlinear kernel regressions.

In the context of our notation, the traditional partial correlation coefficient rij|o is

between two variables, xi, and xj, after removing the linear effect of all other variables

denoted by xo. However, it is necessary to generalize rij|o further by avoiding the assumed

linearity leading to our method (m6). Vinod (2022b) explains a generalized partial cor-

relation coefficient (GPCC) (y, xi|xo) of the indicated variables. It removes the nonlinear

effect of all other regressors. A single-line R code for computing GPCCs is available on the

web.

4



Section 2 details our seventh method (m7), extending psychologists’ effect sizes (ES).

It is necessary to generalize ES to accommodate the usual regression problem with p ≥ 2

regressors, where regressors in a kernel regression need not be dummy (0, 1) variables.

Our eighth and ninth methods of computing the practical significance use partial deriva-

tives (∂y/∂xi) from fitted nonparametric kernel regressions using standardized data. There

are many differences between algorithms for the numerical computation of these partial

derivatives in two R packages. Our (m8) method uses the np package, and (m9) uses the

NNS package. While np uses a chosen bandwidth for each regressor, NNS uses a dynamic

bandwidth for each regressor via iterated conditional means.

Now we introduce tools from machine learning literature for overcoming the p-hacking

problem. These four methods (m10 to m13) are computer intensive. They involve re-

peated iterative computations using randomization and specialized cross-validation. The

underlying algorithms are explained in the literature cited by authors of various R packages

used here. An intuitive explanation of all machine learning algorithms used in this paper

is that they use the brute power of computers to optimize an objective function (e.g., good

fit and or good out-of-sample forecast) under constraints. They all use trial and error with

randomization and cross-validation.

Our tenth method measures the “importance” of a “feature” or regressor. Thus, (m10)

refers to the results based on the R packageNNS function NNS.boost(.). It is an ensemble

method using nonlinear regression based on partial moment quadrant means (NNS.reg).

It stores for each random iteration a regressor list and the corresponding sum of squared

prediction errors (SSPE). NNS.boost measures the importance of each regressor by the

number of times (frequency) it appears among the set achieving the lowest 20% of SSPE

values.

Recall that the p-hacking problem refers to the p-values of regression coefficients in (1)

and (3). The method (m11) re-imagines the defining regression as a game of predicting y

from a set of p regressors (features) along the columns of X. In the literature on cooperative

game theory, Shapley Value fairly divides the payoff among p players. See Branzei et al.
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(2010). We obtain a new measure of practical significance by applying a machine learning

R package ShapleyValue. Our (m11) reports the standardized relative importance of each

regressor while avoiding collinearity.

The R package randomForest implements the famous random forest algorithm by

Breiman (2002). It also reports two measures of the “importance” of a regressor based

on out-of-bin (OOB) calculations in two columns. The first column reports the percent

decrease in mean squared error (MSE) upon omitting each regressor. The second column

reports the mean decrease in accuracy upon omitting each regressor. The importance values

in two columns are called (m12) and (m13) here.

A review of all thirteen methods suggests that each represents a unique viewpoint for

the “importance rankings” of p regressors. In every real problem, the researcher needs to

select a subset of relevant viewpoints from our list. The algorithms for methods (m1 to m4)

are well known, but methods (m5 to m13) are not mentioned in the p-hacking literature,

and some are new. More importantly, my R package practicalSigni allows a side-by-side

comparison.

The plan for the remaining paper is as follows. We describe a new generalization of

effect size in Section 2. Section 3 compares (m1 to m13) rankings side-by-side on ‘mtcars’

data.

2 Generalization of ‘Effect Size’ from Psychology

The “effect size” (ES) measurement from the Biometrics and Psychology literature can be

conveniently motivated by an example in Rosenthal and Rubin (1982). They describe a

medical treatment that reduced the death rate from 66% to 44%. The p-value on the death

reduction exceeded 0.05, implying that the reduction was statistically insignificant. Yet

the treatment saved a great many lives. See Steiger (2004), among others, for additional

examples. The currently available ES measurement solves the problem with p-values sub-

ject to three limitations listed later after we establish the necessary notation. We shall see
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that our method (m7) generalizes the computation of ES to the general regression problem

in (1).

We denote the original effect size quantifying the effect of (xi) on the outcome variable

(y) as ESpsy(xi), where the subscript (psy) indicates the psychological origin of the concept.

Our extension ESpsyx(xi) considers a set of p ≥ 2 treatment variables (xi), (i = 1, 2, . . . , p),

where the additional subscript ‘x’ of ES refers to extensions.

We also assume a set of control variables (xc), such as age, sex, location, etc., that

influence the outcome but are outside the focus of the main research problem. In controlled

experiments (xc) are placebo controls. Social scientists often employ the experimental terms

‘treatments’ and ‘controls’ though their (xi) and (xc) data are passively observed.

Following the Psychology and Biometrics literature, let us initially assume that a treat-

ment variable (xi) is binary. That is, xi = 1 if the subject is treated and xi = 0 when the

treatment is absent. If T is the sample size, let Ti < T denote the subset of xi representing

subjects who are treated, or those with xi = 1. Denote the mean treatment effect by Mxi.

This is the average outcome for the subset of y items (subjects) who were treated by xi.

Denote the corresponding variance by V xi.

We assume a jointly created data generating process (DGP) having y, all xi, and control

variables xc. When passively observed, DGP refers to only one set of subjects, the number

of treated subjects Ti is often the same as that of control subjects Tc. Hence we generally

have Ti = Tc, but not always. Let Mxc denote the average outcome y for the Tc control

subjects. Denote the corresponding variance by V xc.

The “effect size” in psychology is a one-sided t-statistic on the difference between two

means.

ESpsy(xi) =
Mxi−Mxc

SEi

, (5)
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where the denominator is a pooled standard error,

SEi =
√
(

V xi

T i− 1
+

V xc

Tc− 1
). (6)

This paper extends effect size ESpsy(xi) from psychology to more general situations

having three extensions leading to our ESpsyx(xi).

(i) ESpsyx(xi) allows xi with i = 1, 2, . . . , p, (p ≥ 2), based on regressing y on xi, and

suitably defines the mean treatment effect for each xi.

(ii) ESpsyx(xi) extends the regression to be a nonlinear kernel regression.

(iii) Our regressors xi need not be categorical variables.

Remark 1: Zero Variance Adjustment. The definition of the t-statistic of (5) or

ESpsy(xi) uses a standard textbook result on the difference between two sample means.

One assumes that both random samples have sizes satisfying (Ti ≥ 30, T c ≥ 30), and are

independent of each other. The population variances of the two samples are not assumed

to be equal. The statistic (5) is not well-defined unless SEi ̸= 0. The central limit theorem

justifies the claim that ESpsy(xi) is an approximate scale-free Student’s t statistic, unless

it is degenerate.

If the xi regressor variables are converted to binary (0, 1) variables by splitting the data

at the median, it can make the variances zero, implying degenerate cases. One modifies

ES ratios with zero denominators by simply setting SEi = 1. The degenerate ES equals

Mxi − Mxc, or the difference between two means, subject to measurement units, not

unit-free t-statistics.

Remark 2: Sign Adjustment. If the Pearson correlation, r(y, xi) > 0, is positive and

if y refers to something desirable (e.g., profits or longevity), one wants the treatment effect

means (Mxi) to exceed the (placebo) control mean (Mxc). Then, the positive effect size

ESpsyx(xi) is desirable, and negative ESpsyx(xi) suggests the treatment is a failure and may

8



be harmful. The opposite is true for the negative correlation r(y, xi) < 0. If, on the other

hand, y refers to an undesirable outcome (e.g., loss or death), any successful treatment

should have ESpsyx(xi) < 0. In all cases, the sign of the effect size matters. Thus the t-

statistic ESpsyx(xi) is one-sided; their ranking depends on the problem at hand. It is clear

that ordering xi by effect size measured as the absolute values |ESpsyx(xi)| is generally

inappropriate. By contrast, in OLS regressions, the t-stats of regression coefficients are

often two-sided, and their ordering by absolute values can be appropriate.

Now we extend ESpsyx(xi) to be a nonlinear kernel regression using the following steps.

1. It is well known that the OLS regression framework can handle the analysis of variance

methods by letting the regressors be categorical variables. If regressors are continuous,

we must convert such xi regressors into binary (0, 1) dummy variables called Bxi.

Our algorithm splits the data at the median.

2. Count the number Ti of Bxi values that equal unity.

3. Kernel regressing y on Bxi identifies the Ti (fitted outcome values of y) associated

with Bxi = 1.

4. Compute their mean as Mxi and variance as V xi for treatments.

5. Kernel regress y on all xc control regressors (xj, j ̸= i) and find fitted values of

outcomes associated with observations having Bxi = 1 to make sure that their count

is Tc.

6. For controls, find the mean and variance of these fitted values, denoted as Mxc and

V xc. If genuine control variable(s) are absent in the problem at hand, we assume

that the control variable is a column of T ones, xc = ι. Recall the intercept of the

OLS regression model. Since each fitted value ŷ = ȳ, the mean of y, we have Mxc=

(ȳ). Since the variance is degenerate, V xc = 0, we must ignore the denominator in

(5), making it a difference between two means but not a t-statistic.
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7. Insert means and variances in (5) to compute the t-statistic ESpsy(xi) for the differ-

ence between the two means. Of course, in degenerate cases (zero variance), we have

a simple difference between two means in the numerator.

These steps are implemented in R code available on the web. When the t-stat defining

ESpsyx(xi) in (5) is degenerate due to a zero denominator, one must use only the numer-

ator, the difference between two means (Mxi −Mxc). The ESpsyx(xi) with a degenerate

denominator is no longer a t-statistic.

Effect size measurement based on relative difference while ignoring relevant magnitudes

(actual temperatures) is criticized by Pogrow (2019) with a humorous example of choos-

ing a Greenland vacation by comparing it to Antarctica. He suggests the importance of

including relevant measurements, not just relative values. Some researchers suggest confi-

dence intervals around estimated effect sizes. A bootstrap confidence interval around our

ESpsyx(xi) is easy to compute.

The following section illustrates a real-world application based on fuel economy data

for 32 cars called ‘mtcars’ always available in R.

3 Fuel Economy Regressor Orderings for m1 to m13

This section illustrates the ordering of p=3 regressors by their “practical significance” based

on thirteen viewpoints. The ‘mtcars’ data in R is from the 1974 US magazine called Motor

Trend. It has 32 observations for 11 variables. We choose miles per gallon (mpg) as the

dependent variable y, and the regressors are the number of cylinders (cyl), horsepower

(hp), and weight (wt). We assign the rank value 1 to the most important regressor, while

assigning the rank value p to the least important regressor. The index value signs are

adjusted to be consistent with our ranking convention.

Table 1 reports the importance index values of three regressors based on linear and or

bivariate methods (m1) to (m5). The signs have been adjusted so that a larger importance

index suggests greater practical importance in explaining the dependent variable y (mpg).
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Table 2 reports the corresponding rank ordering of regressors. The column for m2 reports

traditional t-stat ranking where wt has the largest t-stat implying wt is the statistically

most significant regressor. The average rank in the last column also suggests wt as the most

important, cyl as the second most important, and hp as the least important (consistent

with t-stat values)

Table 3 reports the importance index values of three regressors based on more modern

nonlinear, nonparametric, and or multivariate (comprehensive) methods (m6) to (m13).

As before, the signs have been adjusted so that a larger importance index suggests greater

practical importance in explaining the dependent variable y (mpg). Table 4 reports the

corresponding rank ordering of regressors. The average rank in the last column also suggests

wt as the most important, cyl as the second most important, and hp as the least important

(similar to the t-stat magnitudes).

Table 1: Importance indexes of (cyl, hp, wt) for methods (m1 = OLS), to (m5 =generalized
correlation coefficient) after sign adjustment (larger the better)

α̂i t-stat β̂i ry,xi depMeas(y,xi)
m1 m2 m3 m4 m5

cyl 0.942 1.709 0.279 0.852 0.943
hp 0.018 1.519 0.205 0.776 0.938
wt 3.167 4.276 0.514 0.868 0.917

Table 2: Ranking by linear and or bivariate criteria m1 to m5 and average rank for the five
methods in the last column

m1 m2 m3 m4 m5 avrank
cyl 2 2 2 2 1 1.80
hp 3 3 3 3 2 2.80
wt 1 1 1 1 3 1.40

Table 3: Sign adjusted importance values of regressors by multivariate nonlinear methods
(larger number means greater practical importance in explaining y)

GPCC ESpsyx np NNS boost Shapley forest1 forest2
m6 m7 m8 m9 m10 m11 m12 m13

cyl 0.0019 4.8739 5.1359 0.4291 0.3333 0.3362 16.75 285.1
hp 0.3886 4.5630 5.8848 0.2562 0.3333 0.2608 16.09 331.3
wt 0.4812 4.3038 5.7036 0.2633 0.3333 0.4030 15.43 368.9
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Table 4: Ranking by nonlinear and or multivariate criteria m6 to m13 and average rank
for the eight methods in the last column

m6 m7 m8 m9 m10 m11 m12 m13 avrank
cyl 3 1 3 1 2 2 1 3 2
hp 2 2 1 3 2 3 2 2 2.10
wt 1 3 2 2 2 1 3 1 1.90

This paper argues that researchers can avoid inadvertent p-hacking if they supplement

p-values by evaluating practical significance. We focus particular attention on readily

measured newer methods (m6 to m13) that are more comprehensive than OLS in the sense

that they allow for multivariate nonlinear nonparametric relations.

Each method (m1) to (m13) highlights different aspects, and considering several meth-

ods plus graphics will mitigate the p-hacking problem.

The p-hackers focus exclusively on the ordering of regressors by their statistical signifi-

cance (or our method m2 using the t-stats). Other comprehensive viewpoints (m6 to m13)

reveal alternative measures of the practical importance of a regressor worthy of considera-

tion.

4 Determinants of Home Prices in Boston

Now we consider Hedonic Prices of Census Tracts in Boston based on a cross-section of

506 owner–occupied homes in 1970. The sample size of 506 is much larger than the 30 cars

studied in Section 3. Moreover, with ten regressors, we can study their ranking providing

insights for housing market choices more meaningfully than the ranking of three engineering

variables.

We are interested in ranking the determinants of median values of these homes to assess

the extent of racism in Boston some fifty years ago. The data are available in textbooks

and an R package ‘Ecdat.’

The names and descriptions of variables are

1. mv: median value of owner–occupied homes (the dependent variable)

12



2. crim: crime rate (not racist)

3. indus: proportion of nonretail business acres (not racist)

4. nox: annual average nitrogen oxide concentration in parts per hundred million (not

racist)

5. rm: average number of rooms (not racist)

6. age: proportion of owner units built prior to 1940 (not racist)

7. dis: weighted distances to five employment centers in the Boston area (not racist)

8. rad: index of accessibility to radial highways (not racist)

9. tax: full value property tax rate (/10,000) (not racist)

10. ptratio: pupil/teacher ratio (not racist)

11. blacks: proportion of blacks in the population (racist)

Similar to (1), consider OLS linear regression having p = 10 regressors. Let us replace

the left side by its expected value allowing us to omit the error term as:

E(mv) = a0 + a1 crim+ a2 indus+ a3 nox+ a4 rm+ a5 age+ a6 dis+ a7 rad

+a8 tax+ a9 ptratio+ a10 blacks. (7)

The adjusted R2 of this regression is 0.7062. The coefficient estimates, with the usual

details, such as t-stats and p-values, are in Table 5. Note that all regressors are statistically

significant and that the p-values in the column entitled Pr(> |t|) are all less than 0.05,

except for the regressor indusmeasuring the proximity of the house to industrial businesses.

Sign Adjustment: Table 5 has an additional column entitled ry,xi for the Pearson

correlation coefficient of mv and each regressor. The sign of the correlation coefficient in

the last column matters for our evaluation of various criteria for their practical significance.
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The correlation between mv and crim is −0.528. We assume that the correct sign is also

negative, implying that the median value mv of a house will decrease if crime increases.

The correlation between mv and rm is +0.642. We assume that the correct sign is also

positive, implying that the median value mv of a house will increase if the number of rooms

in the house, rm, is larger. Our indexes for practical significance are adjusted for the sign

so that a larger index value suggests greater practical significance.

Wrong Signs of dis and rad coefficients: Table 5 reports OLS coefficients with neg-

ative signs for dis, distance from job locations, and for rad, for accessibility to highways.

According to the “correct” signs appearing in the last column for correlation coefficients,

the house value increases for house locations near highways and job locations. Yet OLS co-

efficients are negative. For easy reference, we regard the implausible signs of OLS estimated

coefficients attached to the regressors dis and rad as simply “wrong.”

The largest five correlation coefficient magnitudes among our ten regressors are (0.735,

0.761, 0.778, 0.792, and 0.851). These being rather large, one suspects that collinearity is

causing the “wrong” signs. Vinod (2022a) (ch.1) studies the collinearity problem from the

rigorous perspective of numerical mathematicians, who define a “singular value decompo-

sition” (R function svd) for any data matrix. Our data matrix X has T = 506 rows and

p = 10 columns for the ten regressors, leading to the singular values di, i = 1, 2, . . . 10. The

conditioning of a matrix is defined by the condition number K#(X) = max(di)/min(di).

Numerical mathematicians view collinearity as a consequence of “too large” K#(X) im-

plying ill-conditioned data. Section 1.9.2.2 of Vinod (2022a) states the following Rule of

Thumb, test, K#(X) > 10p, to conclude that the condition number is “too large” for re-

gression applications. For our data, K#(X) = 5283.958 > 10p = 100 holds. Hence, we do

have collinear data. However, using a ridge regression remedy discussed in Vinod (1978) is

not an appropriate option here.

If we are interested in Boston racism in 1970, the coefficient a10 of blacks for the

proportion of blacks in the population is statistically significant, having the p-value 0.0000.

One may be tempted to conclude that racism played an important role in determining home
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prices. Our detailed analysis of this example will show that statistical significance is not the

whole story, and should be supplemented by the measurement of “practical significance.”

Table 5: OLS estimates for hedonic regression of median value of homes in Boston in 1970
Estimate Std. Error t value Pr(>|t|) ry,xi

(Intercept) 10.5390 0.1692 62.29 0.0000
crim -0.0137 0.0015 -9.20 0.0000 -0.528
indus -0.0011 0.0028 -0.40 0.6901 -0.542
nox -0.0078 0.0014 -5.74 0.0000 -0.496
rm 0.0188 0.0012 15.06 0.0000 0.642
age -0.0031 0.0006 -5.34 0.0000 -0.453
dis -0.2443 0.0388 -6.30 0.0000 0.406
rad 0.0937 0.0225 4.17 0.0000 -0.435
tax -0.0005 0.0001 -3.42 0.0007 -0.561

ptratio -0.0397 0.0058 -6.87 0.0000 -0.502
blacks 0.6160 0.1236 4.98 0.0000 0.402

Table 6 reports numerical index values for each regressor named along the rows. The

tabulated values indicate the magnitudes associated with each regressor by traditional linear

and or bivariate methods (m1 to m5). The tabulated values are in the same order as in (7),

adjusted for signs such that a larger index value indicates greater practical significance. The

values in column entitled m1 report OLS coefficient estimates of dis = −0.2443 and rad =

0.0937. Unfortunately, the estimated OLS magnitudes have “wrong” signs conflicting with

the signs of corresponding ry,xi in the last column. The absolute values of dis = −0.2443

and rad = 0.0937 give a wrong impression regarding their practical significance. The

column m1 in Table 6 along rows for dis and rad are reported as negative to downgrade

their magnitudes.

Table 7 reports the ranking of index values in columns of Table 6. It ranks variables

by traditional linear and or bivariate methods. The ranks of regressors dis and rad in

column m1 are respectively 10 and 9 indicating the coefficient magnitudes are practically

least significant in explaining house values. The values in columns entitled (t-stat, m2) and

(β̂i m3) are also negative due to wrong OLS coefficient signs.

Recall that p-hackers focus on ranking by values along the column entitled (t-stat, m2),

except that some researchers may ignore the wrong sign problem with t-stat values as
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indexes of significance. The ranks by m1 to m3 in Table 7 for rad and dis are the lowest

(9, 10) due to the OLS wrong sign problem shared by the underlying viewpoints. The

ranks in column m5 refer to the new generalized correlation coefficient, which allows for

nonlinearities by using kernel regressions but is bivariate. It ignores the presence of other

regressors in the model.

Table 6: Traditional linear methods m1 to m5 magnitudes to assess the practical signifi-
cance

α̂i t-stat β̂i |ry,xi| depMeas(y,xi)
m1 m2 m3 m4 m5

crim 0.014 9.196 0.289 0.528 0.698
indus 0.001 0.399 0.019 0.542 0.727
nox 0.008 5.737 0.267 0.496 0.868
rm 0.019 15.064 0.417 0.642 0.749
age 0.003 5.335 0.212 0.453 0.614
dis -0.244 -6.298 -0.322 0.406 0.572
rad -0.094 -4.169 -0.201 0.435 0.551
tax 0.000 3.415 0.197 0.561 0.652

ptratio 0.040 6.874 0.210 0.502 0.656
blacks 0.616 4.983 0.138 0.402 0.513

The last columns of these tables report average ranks by various methods reported along

each row. The Tables are sorted according to each table’s “avrank” values.

Table 7: Ranking by traditional linear bivariate methods

α̂i t-stat β̂i |ry,xi| depMeas(y,xi)
m1 m2 m3 m4 m5 avrank

rm 3 1 1 1 2 1.6
crim 4 2 2 4 4 3.2
nox 5 4 3 6 1 3.8

ptratio 2 3 5 5 5 4.0
indus 7 8 8 3 3 5.8
age 6 5 4 7 7 5.8
tax 8 7 6 2 6 5.8

blacks 1 6 7 10 10 6.8
rad 9 9 9 8 9 8.8
dis 10 10 10 9 8 9.4

Table 8 reports index values of regressor variables by newer nonlinear multivariate meth-

ods (m6 to m13). Again, tabulated regressor values follow the same order as in (7), adjusted
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for signs such that a larger index value indicates greater practical significance according

to the viewpoint in the column title. For example, according to the generalized partial

correlation coefficient (GPCC) criterion in m6, the top two regressors are neighborhood

crime and pollution (nox). If we consider psychologists’ “effect size” criterion (m7), the

two top regressors are ptratio, indus.

Table 8: Index values by newer nonlinear multivariate methods
GPCC ESpsyx np NNS boost Shapley forest1 forest2

m6 m7 m8 m9 m10 m11 m12 m13
crim 0.619 0.142 6.033 0.093 0.136 0.127 25.336 12.806
indus -0.207 0.194 -0.720 0.125 0.045 0.075 12.741 5.127
nox 0.592 0.190 2.630 0.113 0.091 0.076 25.122 13.131
rm 0.340 0.184 0.235 -0.071 0.045 0.304 53.674 21.384
age 0.183 0.177 0.283 0.135 0.136 0.061 21.563 3.885
dis 0.036 0.145 0.142 -0.110 0.091 0.045 18.899 7.087
rad -0.265 0.162 -0.030 0.126 0.136 0.045 9.463 1.236
tax 0.038 0.179 0.606 0.148 0.136 0.089 11.470 4.474

ptratio 0.407 0.210 -0.049 0.109 0.045 0.117 17.351 8.366
blacks 0.229 0.019 -0.275 -0.107 0.136 0.059 15.712 3.567

Table 9 reports the ranking of variables by newer nonlinear multivariate methods based

on the index values in Table 8, where the regressors are rearranged according to the average

ranks in the last column. We find that newer multivariate nonlinear criteria (m6 to m13)

regard crim, nox and rm as the three most important regressors. The size of the home

measured by rm is less important than neighborhood crime and pollution.

Table 9: Ranking by newer nonlinear multivariate methods
GPCC ESpsyx np NNS boost Shapley forest1 forest2

m6 m7 m8 m9 m10 m11 m12 m13 avrank613
crim 1.0 9.0 1.0 7.0 3.0 2.0 2.0 3.0 3.5
nox 2.0 3.0 2.0 5.0 6.5 5.0 3.0 2.0 3.6
rm 4.0 4.0 5.0 8.0 9.0 1.0 1.0 1.0 4.1
tax 7.0 5.0 3.0 1.0 3.0 4.0 9.0 7.0 4.9
age 6.0 6.0 4.0 2.0 3.0 7.0 4.0 8.0 5.0

ptratio 3.0 1.0 8.0 6.0 9.0 3.0 6.0 4.0 5.0
indus 9.0 2.0 10.0 4.0 9.0 6.0 8.0 6.0 6.8

dis 8.0 8.0 6.0 10.0 6.5 9.0 5.0 5.0 7.2
rad 10.0 7.0 7.0 3.0 3.0 10.0 10.0 10.0 7.5

blacks 5.0 10.0 9.0 9.0 3.0 8.0 7.0 9.0 7.5
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Let us compare the importance ranking of our ten regressors in Table 7 based on five

older (m1 to m5, linear bivariate) criteria with Table 9 summarizing newer nonlinear and

multivariate (m6 to m13) viewpoints. The most important regressor is the size of the home

(rm) by older criteria and crime by newer criteria. The racist variable, blacks, is ranked

third from the bottom in Table 7 for older methods. By contrast, all nine regressors are

considered more important in determining the home values than the racist variable blacks

in Table 9 for newer methods m6 to m13.

A naive comparison of p-values in Table 5 suggests all regressors have nine comparably

“small” p-values 0.0000 (rounded to four digits), and could not have afforded the following

insight about the role of racism. We demonstrate that the housing prices in Boston in 1970

were determined more by regular market forces, not racist prejudice.

4.1 R code for the housing example

The following code implementation on my home computer took all night to implement.

The options m6 and m10 are time-consuming. There is an option to not to bother with

computing m6 and m10 to save computer time by setting yes13[6]=0 and yes13[10]=0.

library(practicalSigni)

options(np.messages=FALSE)

library(Ecdat)

attach(Hedonic)

bigx=cbind(crim,indus,nox,rm,age,dis,rad,tax,ptratio,blacks)

r1=reportRank(y=mv,bigx,verbo=TRUE) #this can take 10 hours

#following unneeded code merely sorts the results.

vmtx15=r1$v15

vmtx613=r1$v613

rmtx15=r1$r15

rmtx613=r1$r613
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so15= sort_matrix(rmtx15,ncol(rmtx15))

so613= sort_matrix(rmtx613,ncol(rmtx613))

5 Final Remarks

Recent literature focuses on the need to avoid the p-hacking problem, Wasserstein et al.

(2019), arising from excess reliance on regression coefficient p-values (t-stat) while ignoring

“practical significance.” Since linearity and normality are strong assumptions, we argue

for nonlinear nonparametric kernel regressions to supplement the OLS common in most p-

hacking examples. While many papers demonstrate the existence of the p-hacking problem,

very few provide algorithms (software) to solve the problem. Vinod (2022b) proposes

two methods (m6) using generalized partial correlation coefficients (GPCC) and a partial

derivative (m8) using the ‘np’ package to solve the p-hacking problem.

Some Psychometrics and Biometrics researchers have long ago proposed an intuitive

method of measuring practical significance. They consider “effect sizes” ESpsy(xi) instead

of t-stats. This paper describes a new method (m7 and software algorithm steps) for what

we denote as ESpsyx(xi). The additional subscript ‘x’ suggests an extension by admitting

p ≥ 2, possibly continuous regressors, and nonlinear kernel regressions.

Among new methods in this paper, (m9) is analogous to (m8) using the ‘NNS’ package.

This paper provides algorithms for implementing four new measures of practical significance

(m10 to m13) using machine learning algorithms. The machine learning methods can be

sensitive to random seeds. The ultimate choice must depend on the scientific context.

This paper reports a real-world example of fuel economy regression. The average rank

computed over eight methods is a good summary of various viewpoints deserving serious

consideration. We also compute the average rank (avrank) over the eight newer methods

(m6 to m13). Our second example using data on determinants of home prices shows that

the home values in Boston in 1970 were determined by normal market forces and not

racist prejudice. A naive comparison of OLS p-values in Table 5 displays that eight of
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ten slope p-values are very small (=0.0000). Since the racism regressor blacks is one

of eight regressors sharing the small p-value, racism appears to be highly statistically

significant. By contrast, further analysis of practical significance shows blacks as the least

important regressor implying that racism was less critical. This example demonstrates

that practitioners should consider supplementing their p-values with comprehensive tools

readily computed by simple R commands (section 4.1).
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