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Abstract

Random Uniform Forests (Ciss, 2015a) are an ensemble model that use many ran-
domized and unpruned binary decision trees to learn data. It is a variant of Random

Forests (Breiman, 2001) and in this article, we will focus on how variable impor-

tance is assessed in Random Uniform Forests. We provide many measures of variable
importance and show how they can help to explain the data and how they can en-
hance prediction tasks. In Random Uniform Forests, the main purpose of Variable
Importance is to assess which, when, where and how covariates have influence on
the problem. We provide a description of measures of Variable Importance as they
are defined in the model, with full comprehensive examples and many visualization
tools. These ones may be viewed as the shadow of Variable Importance techniques
and all tools discussed can be found in the randomUniformForest R package.
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1 Introduction

In the Machine Learning domain, Variable Importance takes an increasing part in the
way of understanding models and explaining variables that rely to the problem one needs
to solve. To take a parallel, in linear models especially when they come with statisti-
cal hypothesis, once the prediction task is achieved one needs to know how covariates
are explaining the predictions; informations are usually got by assessing coefficients of
the regression task. In real life problems, this is essential since one must provide clear
informations to the man that pushes the button. Moreover, if shifts happen, letting pre-
dictions deviate from the true responses, the model should be able to provide, at least, a
global explanation. For example, when detecting defaults in an industrial process, know-
ing which covariates (and their links with others) are leading the most to defaults is a
companion task of the prediction one. Statistical hypothesis are valid but can be, more
often than expected, a particular case of the real word. When going toward non linear
and non parametric models, only a very few hypothesis are needed but validity must be
found in the data. When the models are also random, concepts like Variable Importance
depend from both model and data. The paradigm is to state that if predictions are
consistent and if Variable Importance depends on both model and data, then Variable
Importance will also be, at least, consistent.
For ensemble models like Bagging (Breiman, 1996) or Random Forests (Breiman, 2001),
Breiman introduced measures to assess the importance of the covariates with respect
to the problem, the model and the data. Friedman (2002) also provided an important
measure, partial dependence, that allows to link, almost directly, predictions and any (or
many) covariate(s). In this article, we extend these concepts and define them for Random
Uniform Forests. Ensemble models are well suited for Variable importance measures for,
at least, three reasons :
- they are, usually, random models. Hence what is first expected, is to also get random
relations between covariates or between covariates and the target. If it does not happen,
one may consider, with confidence, that relations lead to strong informations.
- Ensemble models use many base learners, hence data can be assessed over these ones,
leading to enough information.
- They, usually, need a very few hypothesis about the data and can handle a huge number
of variables in a same analysis.

We, first, provide a quick overview of Random Uniform Forests in section 2. In sec-
tion 3, we describe the global variable importance. In section 4, we define and describe
the local variable importance which leads to partial importance and interactions between
covariates. Section 5 provides another alternative for getting partial dependencies. We
give, in section 6, full comprehensive examples over two real datasets and conclude in
section 7.

2 An overview of Random Uniform Forests

Random Uniform Forests are close to Breiman’s Random Forests but they come with
many differences at the theoretical and algorithmic levels. The most important one is the
use of random cut-points. More precisely, Random Uniform Forests are designed to be
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fairly simple and to let data speak for themselves with some kind of global optimization.
They are also designed to be enough versatile to allow techniques like incremental learn-
ing, unsupervised learning or models like Bagging or ensemble of totally randomized trees.

Formally, a Random Uniform Forest is an ensemble of random uniform decision trees,
which are unpruned and binary random decision trees that use the continuous Uniform
distribution to be built. Let us consider Dn = {(Xi, Yi), 1 ≤ i ≤ n}, corresponding to the
observations and responses of a training sample, where (X, Y ) is a R

d×Y-valued random
pair, with respect to the i.i.d. assumption. Let us suppose, for brevity, that Y ∈ {0, 1}
considering, then, the binary classification case. The decision rule of a random uniform
decision tree can be written with the following lines :

g
P
(x,A,Dn) = g

P
(x) =







1, if
∑n

i=1 I{Xi∈A,Yi=1} >
∑n

i=1 I{Xi∈A,Yi=0}, x ∈ A

0, otherwise.

A is the current terminal and optimal region (node), coming from the recursive partition-
ing scheme.
g
P

is the decision rule of the tree.

For regression we have:

g
P
(x,A,Dn) = g

P
(x) =

1
∑n

i=1 I{Xi∈A}

n
∑

i=1

YiI{Xi∈A}, x ∈ A.

To define each possible region, and then a terminal one, we need a variable and a cut-
point (a threshold below and beyond which one region and its complementary ones are
defined). We sates that A is an optimal region of the random uniform decision tree if :

for any A ∈ P ,
{

X
(j∗)
i ≤ αj∗ |Dn

}

, 1 ≤ j ≤ d, 1 ≤ i ≤ n,

for any AC ∈ P ,
{

X
(j∗)
i > αj∗ |Dn

}

, 1 ≤ j ≤ d, 1 ≤ i ≤ n,

where, for classification :
αj ∼ U

(

min(X(j)|Dn), max(X
(j)|Dn)

)

and j∗ = arg max
j∈{1,...,d}

IG(j,Dn),

and for regression :
αj ∼ U

(

min(X(j)|Dn), max(X
(j)|Dn)

)

and j∗ = arg min
j∈{1,...,d}

L2(j,Dn),

with IG, the Information Gain function and L2, an Euclidean distance function.

One can note that using the support of each candidate variable is not necessary, while
more convenient, especially in classification. IG and L2 are the criteria that allow to
choose the best random optimal node at each step of the recursive partitioning. We get :

IG(j,Dn) = H(Y |Dn)−
[

H
((

Y |X(j) ≤ αj

)

|Dn

)

+ H
((

Y |X(j) > αj

)

|Dn

)]

,

where H is the Shannon entropy (note that we use it with the natural logarithm),
and

H(Y |Dn) = −
1
∑

c=0

{

1

n

n
∑

i=1

I{Yi=c} log

(

1

n

n
∑

i=1

I{Yi=c}

)}

,
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with, by definition, 0 log 0 = 0, so that H(Y ) ≥ 0.

Let n
′
=
∑n

i=1 I
{

X
(j)
i ≤αj

}, then

H
((

Y |X(j) ≤ αj

)

|Dn

)

= −
n

′

n

1
∑

c=0

{

1

n
′

n
∑

i=1

I{Yi=c}I
{

X
(j)
i ≤αj

} log

(

1

n
′

n
∑

i=1

I{Yi=c}I
{

X
(j)
i ≤αj

}

)}

,

and

H
((

Y |X(j) > αj

)

|Dn

)

=

−
n− n

′

n

1
∑

c=0

{

1

n− n
′

n
∑

i=1

I{Yi=c}I
{

X
(j)
i >αj

} log

(

1

n− n
′

n
∑

i=1

I{Yi=c}I
{

X
(j)
i >αj

}

)}

.

For regression, we define L2(j,Dn) by

L2(j,Dn) =
n
∑

i=1

(

YiI
{

X
(j)
i ≤αj

} − ŶAI
{

X
(j)
i ≤αj

}

)2

+
n
∑

i=1

(

YiI
{

X
(j)
i >αj

} − ŶACI{
X

(j)
i >αj

}

)2

,

with

ŶA =
1

n′

n
∑

i=1

YiI
{

X
(j)
i ≤αj

} and ŶAC =
1

n− n′

n
∑

i=1

YiI
{

X
(j)
i >αj

}.

It remains to define the decision rule, ḡ(B)
P

, of the Random Uniform Forest classifier
:

ḡ(B)
P

(x) =







1, if
∑B

b=1 I{g
(b)
P (x)=1}

>
∑B

b=1 I{g
(b)
P (x)=0}

0, otherwise.

And for regression :

ḡ(B)
P

(x) =
1

B

B
∑

b=1

g(b)
P
(x).

Random Uniform Forests inherit of all properties of Breiman’s Random Forests, especially
convergence and Breiman’s bounds. Their main theoretical argument is to achieve low
correlation of trees (or trees residuals) while not letting average variance increasing too
much. While one may get more details (Ciss, 2015a), in this article the main argument
that can be linked with the Variable Importance concepts relies on the functions IG and
L2.

3 Global Variable Importance

As in Random Forests, we provide a similar measure for variable importance before going
deeper in the assessment of variables.
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We call it the global variable importance, measured directly using the optimization crite-
rion. if VI is the score of importance, we have for the j-th variable, 1 ≤ j ≤ d, named j∗

if it is optimal,

VI(j∗) =
B
∑

b=1

k
b
∑

l=1

IGb,l(j
∗, Dn),

and, for regression

VI(j∗) =
B
∑

b=1

k
b
∑

l=1

L2b,l(j
∗, Dn),

where k
b

is the number of regions for the b-th tree, 1 ≤ b ≤ B.

We, then, define relative influence by computing VI(j∗)/
∑d

j=1 VI(j) and report it as the
global variable importance measure.

Variable importance is measured over all nodes and all trees, leading all variables to
have a value, since cut-points are random. Hence each variable has equal chance to be
selected but it will get importance only if it is the one that decreases the most the entropy
at each node. In the case of regression, an important variable must really earn its place
since the lowest value of the L2 function is selected for each node, being more and more
smaller as we get deeper in the tree. Global variable importance produces the variables
that lower the most the prediction error but it tells us nothing about how one important
variable affects the responses. We might want to know, for example, features that affect
the most one class or features that lead to high realizations of Y , in case of regression.
Or we might want to know interactions of variables.

4 Local Variable Importance

Definition. A predictor is locally important at the first order if, for a same observation,
and for all trees, it is the one that has the highest frequency of occurrence in a terminal
node.

Let us note LVI(b)(j, i), the local importance score of the i-th observation and the j-
th variable of X, for the b-th tree,
LVI(j, i), the score for all trees,
LVI(j, .), the score of the j-th variable of X for all observations,
R(j, αj) = {X|X(j) ≤ αj}, a candidate terminal region whose all observations are below
αj for X(j),
RC(j, αj) = {X|X(j) > αj}, its complementary region.
To simplify, we rely on classification and define LVI(b)(j, i) by

LVI(b)(j, i)

= I{IGb(j∗,Dn)=IGb(j,Dn)}

(

I{
g
(b)
P (Xi,R(j∗,αj∗ ))=g

(b)
P (Xi,R(j,αj))

} + I{
g
(b)
P (Xi,RC(j∗,αj∗ ))=g

(b)
P (Xi,RC(j,αj))

}

)

.

The above relation states that we count when a variable falls into a terminal node (a leaf),
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which tree and which observation are concerned. The first term of this expression tells
us that the variable we are counting must be the optimal one for the node that leads to
a leaf. The second and the last terms state that we are counting one of the two possible
leaves, depending on where the tree drives the data. Hence, for the j-th variable we
count it only when it is an optimal one for the leaf where falls the i-th observation. To be
more clear, the LVI function is nothing other than a counting function for variables that
immediately lead to a leaf and find these variables depends only to where an observation
will fall. One can note that we do not use the training labels, since we want all the
measures we will give to be only dependent to the forest itself. Knowing that, we can
count for all trees the function LVI(j, i), given by

LVI(j, i) =
B
∑

b=1

LVI(b)(j, i),

and for all trees and observations and for the j-th variable,

LVI(j, .) =
n
∑

i=1

LVI(j, i).

Next step is to consider that the j-th variable can appear in second, third, or more, po-
sition among all others when counting all the scores and ordering them, for all trees and
for any single observation. Note, here, that position and order designate the same term.
For example, one variable may appear at the second position for half of the observations
and at last position for the other half. We do not want to be too close to the observa-
tions, since in practice assessing the test set is as (if not more) important as assessing the
training set. Hence, instead of just aggregating the local score by computing LVI(j, .),
we consider that a variable is locally important for all trees and all observations if it has
a high rank. The procedure is defined with the following steps :
i) for each observation and variable, we compute LVI(j, i) and report the name of the
variable that has the highest number of occurrences, then the name of the one that has
the second highest number of occurrences and so on.
ii) The first step gave us a table, with n observations and d columns. In each row we
have the name of the variables ordered from variables that have the highest number of
occurrences to the ones that have the lowest. Only the names of the variables are re-
ported, hence each column is a meta-variable that we call position since it gives the rank
of any variable for each observation.
iii) The third step is to count how many times a variable appears in position q, 1 ≤ q ≤ d.

However, we want to know, if we choose the position q of the j-th variable what will
be its score. We call this function the local importance score at the position q, 1 ≤ q ≤ d,
SLIq(j, .) for all observations and for the j-th variable. It is defined by

SLIq(j, .) =
n
∑

i=1

I{

j = arg
u∈{1,...,d}

LVI(d−q+1)(u,i)

},

where LVI(d−q+1) is the (d − q + 1)-th order statistics of the LVI function, ordering all
variables for any single observation. Here, we state that if we choose the position q of the
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j-th variable, we will get a score that matches all the cases (for all trees and all observa-
tions) where the j-th variable came at the position q. But we have d variables, so knowing
the score of any of them does not tell us which is the most locally important since the
positions we got were fixed and are not the true ones when considering all variables.

iv) Hence, the last step is to get all locally important variables ranked from the most
influential to the less influential, allowing us, by the way, to define interactions between
covariates. The true position (so its rank) of the j-th variable, for a fixed position q, is
given by

q∗j = arg max
u∈{1,...,d}

SLIq(u, .).

The computation of q∗j implies that a variable can only achieve influence when comparing
it to the influence of others for the same fixed position q. This is what defines implicitly
the local importance in the same sense that relative influence is defined for the global
variable importance. For example, if q∗j = 1, meaning that we first define q to be 1 for all
variables, then the j-th is the most locally important at the first order.

4.1 Partial importance

Partial importance is the way to assess the importance of a covariate when the label Y
is fixed (or for realizations of Y above or below a threshold in the case of regression).

Definition. A predictor is partially important if, for a same observation and one class,
and at all the orders, it is the one that has the highest frequency of occurrence in a ter-
minal node.

Note that the above definition also matches the case of regression. The score of par-
tial importance is given by

SLI(j, ., y) =
d
∑

q=1

(

SLIq(j, .)|ḡ
(B)
P

(X) = y
)

.

To understand partial importance one has to take account two points:
i) counting occurrences of a predictor is interesting but does just give frequency,
ii) for each observation met in a terminal node, we record the value estimated by the
classifier. That gives us the intensity (or the label in case of classification).

Hence, we have for each observation the score of any covariate, at all positions, and
the classifier estimate. Then, partial importance gives, for each class or for some re-
sponses above (or below) a threshold, the predictors which are the most relevant. Again,
we compute relative score to be more close to the model. Clearly, partial importance
tells what are the variables that are explaining the variability of the response (regression)
or one class rather than another (classification). This gives us a new information with
regard to global variable importance, that just tells us what are the relevant variables.
One can note that interesting cases come with regression for which we can observe how
covariates are explaining the vector of responses if we look any range of the latter.
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4.2 Interactions

But we may want to know how covariates rely to the problem when we consider them
all. For example, some variables could have a low relative influence on the problem but
a strong effect on a more relevant covariate. Or this covariate could have many inter-
actions with others, leading the variable to have influence. So, we need a definition for
interactions.

Definition. A predictor interacts with another one if, for a same observation, and
for all trees, both have respectively the first and the second highest frequency of occur-
rence in a terminal node.

If VII is the score of interactions, we have for X(j) and X(j′),

VII(1,2)(j, j
′) =

SLI1(j, .) + SLI2(j
′, .)

2n
,

where the values 1 and 2 state for the first and second order and are given by first
computing q∗j and q∗j′ to find which variables (two) come at first in the interaction order.
Then, for the most important we report SLI1(j, .), where j is now fixed, and choose the
j′-th variable for a fixed position q = 2 and for the remaining d− 1 variables. If we can
not get the first and second order, then the interaction will be null for the two variables.
Interactions act as a visualization tool in order to see the influence of all covariates in a
unique manner.
The last step computes VII(1,2)(j, j

′) and we create a contingency table where all values
of VII(1,2) and VII(2,1) will stand. That gives us the interactions visualization tool of
all covariates. Moreover, we can merge covariates that have weak influence to have a
granular view. Interactions are interesting since they give the big picture on how all
variables rely to the problem for any pair of variables.
They also lead to the measure of variable importance based on interactions, given by

VII(j, .) =
1

2d

d
∑

j′=1

VII(1,2)(j, j
′) +

1

2d

d
∑

j′=1

VII(2,1)(j, j
′) + VII(1,2)(j, j).

We state here that the variable importance based on interactions for the j-th variable
is the measure on how this variable is having dependence with all others and how it is
having influence on the local variable importance.

The point we introduced is that, for all measures that depend to the local variable im-
portance, we did not want to average scores over observations, since the forest classifier
refers to observations, dimension and trees. In order to get a more generic view, we rely
on positions, meaning that each variable gets influence depending on the rank it obtains
each time we compute a measure on a single observation, using all trees. The rank goes
from 1 to the total number of variables and a high rank is simply a high number of
occurrences. Then, the rank is generalized over all observations leading to the measures
we get.
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5 Partial dependencies

These are tools that allow to measure how influence of each covariate (or a pair of covari-
ates) is affecting the response values, knowing the values of all others covariates. More
clearly, a partial dependence plot is the marginal effect of a covariate over the response
values. The idea of partial dependence came from Friedman (2002) who used it in Gra-
dient Boosting Machines (GBM); but it is implemented differently in Random Uniform
Forests.
Let pD(j)q be the partial dependence at position q for the j-th variable. We have

pD(j)q (Y,X) =
{((

ḡ(B)
P

(Xi, R(j, αj)), X
(j)
i

)

|SLIq(j, i) > 0) , 1 ≤ i ≤ n
}

,

where ḡ(B)
P

(Xi, R(j, αj)) is the forest classifier evaluating each observation, knowing that
the j-th variable is locally important for the current evaluated observation. The local
importance is, so, designated by the SLIq function for every point. What makes the dif-
ference with a simple look in a terminal node to get a prediction is that the covariate must
have some influence for each observation. Hence both predicted value and observation
will stress the partial dependence plot up to some point where values will no longer be
available. To avoid getting a too weak relation between covariate and target, we define
the partial dependence function at all orders. It is given by

pD(j)(Y,X) =
{(

pD
(j)
1 (Y,X), ..., pD(j)q (Y,X), ..., pD

(j)
d (Y,X)

)

, 1 ≤ q ≤ d
}

.

The function provides all the points needed in the range of the covariate and increases
the randomness. One can note that each point X

(j)
i will now have at most d values of

the forest classifier for assessing the dependence. This has the advantage of getting more
consistent and interpretable results. If covariate and target have no relation, plotted
points will have an Uniform distribution on the map. Otherwise, one will get the shape
of their relation. One of the interesting point with partial dependencies is their ability
to allow extrapolation. This latter is known to be a limitation of Random (Uniform)
Forests since their estimator can not produce unseen values beyond the range of Y in the
training sample. One just has to compute a parametric model of the tails in the partial
dependence function. Usually these will be linear with the covariate and extrapolation
happens by choosing the right threshold beyond which a linear model will be a good
approximation. If many covariates have influence, one can eventually compute one para-
metric model over a multi-dimensional partial dependence function. The main argument
of Random Uniform Forests is that they allow to get more points for such objects like
extrapolation.

We provided in the lines above many ways to assess variable importance and one can
visualize most of them in just one screen to get the big picture. It leads to both feature
selection and interpretation. This latter point is essential since, to our point of view,
Random (Uniform) Forests are not a black box. We can then summarize main properties
of Variable Importance in Random Uniform Forests.
i) All tools provided, except the global variable importance, work on both training and
test samples. As a consequence, they do not use the labels (or responses) but only the
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forest classifier.
ii) All tools are complementary. It means that when a feature is found to be important,
an explanation can be found using each measure separately and/or combining them.
iii) The main purpose of variable importance is to assess which, when, where and how
covariates have influence on the problem.
iv) In reference to Random Uniform Forests, we can define the importance of a variable
with the following scheme : importance = contribution + interactions, where contribution
is the influence of a variable (relatively to the influence of all) on the prediction error and
interactions is, at least, its influence on the others covariates.

6 Experiments

In this section, we provide many visualization tools and measures of the methods provided
below. To make them reproducible, all the R code is provided and we take for both
classification and regression one real world dataset.

6.1 Classification

For classification, we chose the Car evaluation dataset freely available on the UCI repos-
itory . or in the randomUniformForest package. The dataset has 1728 rows, 6 attributes,
all categorical, and 4 classes. The purpose of the task is to classify each car (given by a
row) as unacceptable (unacc), acceptable (acc), good or very good (vgood). Variables are
buying, priceOfMaintenance, nbDoors, nbPersons, luggageBoot, safety. In the context of
Variable Importance we want to know how covariates lead to one class or another. One
has to note that the randomUniformForest algorithm is stochastic. Hence, even with the
same (data and) seed one will not be able to exactly reproduce results; however, since
convergence happens, there will be only slight variations that will not change the analysis.

At first, let us (install and) load the package under the R software (>= 3.0.0).

# Install package

install.packages("randomUniformForest")

# load it

library(randomUniformForest)

Then, load the data, extract the labels column, take a random subset of the data and
train the model. Note that one must take care of the categorical variables.

data(carEvaluation)

XY = carEvaluation

classColumn = ncol(XY)

Y = extractYFromData(XY, whichColForY = classColumn)$Y

X = extractYFromData(XY, whichColForY = classColumn)$X

# view a summary

str(X)
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# or summarize

summary(X)

# see the distribution of the labels

table(Y)

# then train the model, using a subset (half) of the data

set.seed(2014)

n = nrow(X)

subsetIdx = sample(n, floor(n/2))

car.model.ruf = randomUniformForest(X, Y,

subset = subsetIdx, ntree = 500, categoricalvariablesidx = 1:6)

Note that we choose the number of trees in the forest, ntree, to be 500, and the num-
ber of selected features for each node is the default one, ’4/3 × dimension’. This latter
means that we select, randomly and with replacement, 8 variables that correspond to 8
candidate nodes from which, only one will be chosen (using the optimization criterion)
to get the optimal random node at each step of the tree growth.
Using categoricalvariablesidx = 1:6 forces the algorithm to consider all the variables as
categorical, letting it use the engine that is dedicated to these variables. Accuracy may
drop a little, in comparison to consider them as purely numeric, but Variable Importance
assessment will be consistent with the whole process.

One may look the results of the evaluation, calling the trained model :

car.model.ruf

i) But, since we are interested by assessing covariates, let us look the global Variable
Importance which comes with two blocks :

summary(car.model.ruf)

displays :

Variables summary:

variables score class class.frequency percent percent.importance

1 priceOfMaintenance 3171 acc 0.51 100.00 26

2 buying 2736 acc 0.50 86.27 23

3 nbDoors 2335 acc 0.50 73.64 19

4 luggageBoot 1962 acc 0.48 61.87 16

5 nbPersons 1353 unacc 0.46 42.66 11

6 safety 555 unacc 0.85 17.51 5

This first table gives the score of global variable importance for all variables, the majority
class and its frequency and the relative influence of each variable. The main point here is
that safety which is the less influential, when considering all classes, is the most one, by
far, when considering unacceptable cars. One can note that class frequencies do not need
to sum up to 1, because each variable is considered separately from the others, getting
first its score then looking the majority class. The link between classes and variables is
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essential in Random Uniform forests. But, let us first look to the whole plot of global
variable importance.

Figure 1: Global variance importance for (a subset of) the Car evaluation dataset

The plot is simply the extraction of the former table with the grey vertical line indicating
where the importance of each variable would lie if all variables had the same influence.
Comparing this plot with the one from Breiman’s Random Forests would show safety and
nbPersons as the most influential variables. If we take into account the class distribution,
unacceptable cars are the most frequent (69% of the cases) and one would wonder, as it is
shown in the table above, how matter the number of cases per class. In Random Uniform
Forest, the point of view is taking account both prediction and class distribution aspects.
- The global variance importance plot is a measure that gives the influence of the most
predictive variables with little dependency to the class distribution.
- The global variance importance table nuances the measure by also getting how each vari-
able is relying to a class, from the same predictive point of view.
Hence, if we order the table by ordering variable according to the frequency of each class
we get the same order than in the randomForest algorithm.

ii) The next step is to get the big picture. We have to call the importance function
of the algorithm then simply plot the results. The function also applies to the test set.

car.importance.ruf = importance(car.model.ruf, Xtest = X[subsetIdx,],

maxInteractions = 6)

# that leads to many details which can be summarized with :

plot(car.importance.ruf, Xtest = X[subsetIdx,])

The commands below are the default ones, and can be refined to be more or less granular.
In particular using a high value of maxInteractions lead to be as close as possible to the

12



details (the parameter q in the local variable importance). We get many plots (one will
need to use the R menu, tiling windows vertically, to see them all) that correspond to
the tools defined and described formerly.
The first one is the interactions visualization tool represented below :

Figure 2: Interactions between covariates for (a subset of) the Car evaluation dataset.

The plot above provides the interactions at first and second order for all the covariates,
according to the definition we gave for interactions. Its area is one. The first order states
that the variables (ordered by decreasing influence) are the most important if a decision
has to be taken by considering one, and only one, variable. safety comes at first, mean-
ing that when evaluating a car it would be the first variable that would come with the
evaluation. The second order states that if an unknown variable is already selected at
the first order, then the second most important variable will be one of those in second
order. At the second order buying (price) comes at first, meaning that if an unknown
variable is selected to be the most important variable, buying would be the second most
important.
To be more clear, interactions provide a table of ordered possibilities. First order gives
the ordered possibilities of most important variables. Second order gives the ordered
possibilities of second most important variables. Crossing a pair of variables gives their
relative co-influence over all the possible co-influences. One can note that these measures
are both model and data dependent. Hence, confidence in the measures relies directly to
confidence in the predictions. One can also note that a meta-variable called Others fea-
tures appears, meaning that we let the algorithm show the default view for visualization,
grouping the variables that are less relevant.
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iii) Interactions come with their Variable Importance measure that ranks variables by
their relative co-influence. We represent it below :

Figure 3: Variable Importance based on interactions for (a subset of) the Car evaluation
dataset.

The graph above shows how each variable is represented when aggregating its co-influence
with any other variable. One important note is that the first variable is not necessary the
most important but the one that has the most co-influence with others.

iv) We also define the Variable Importance over labels which provides a view on how
the aggregated interactions affect each class :

Figure 4: Variable Importance over labels based on interactions on each (fixed) class for
the Car evaluation dataset.

safety is strongly linked with unacceptable cars which are, by far, the most important
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class, so that, it comes at the top position of interactions or (global) variable importance
of others algorithms. Variable Importance over labels provides a local point of view :
the class is fixed, meaning that one first takes a decision to fix the class by looking the
variables that matter and act like constraints, then looks the important variables for each
class. Hence each variable has importance as if others classes did not exist. For exam-
ple, very good (vgood) cars are the ones that offer enough number of doors and space in
luggage boot. But before getting that, one has already take a decision with (eventually)
others variables to state if a car is very good or not.
Here, we are not interested by variables that lead a class to be chosen, but by variables
that will matter within the class, once this latter chosen. The order of variables gives their
aggregated rank relatively to their rank in each class, without considering the importance
of the class. For example, nbDoors appears in first because it is well placed within each
class.safety comes in almost last position because it has an high rank only in one class,
despite its importance. An important note is that in the shown mosaic plot, the algorithm
computes the values with respect to the displayed variables. It means that we can also get
informations by excluding variables. Here the plot is displayed as if the buying variable
did not exist, but this latter would have been displayed if its aggregated rank had been
high or if we had specified it.

v) Before calling the partial dependencies, one may review the plot above by asking
the partial importance. In others words, if one decide to fix the class by itself, will one
get the same informations about how variables matter within a class ? We need one line
of R code per class :

car.partialImportance.ruf = partialImportance(X[subsetIdx,],

car.importance.ruf, whichClass = "good")

Figure 5: Partial Importance for the class good in (a subset of) the Car evaluation dataset.

In classification, partial importance is almost the same than Variable Importance over la-
bels except that it overrides default parameters showing all variables for each asked class.
We can see here than buying comes at second position when one decides to evaluate a
car already considered as a good one.
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vi) The analysis of Variable Importance can go further by calling partial dependencies.
For brevity we call only the one for a single variable, here safety.

car.partialDependence.ruf = partialDependenceOverResponses(X[subsetIdx,],

car.importance.ruf, whichFeature = "safety", whichOrder = "all")

Figure 6: Partial dependence plot in (a subset of) the Car evaluation dataset.

The Partial dependence plot provides the highest level of granularity, since we get now
within each variable, observing its marginal effect on each class. Above we can see that
the variable is affecting, the most, unacceptable cars for low values of safety. As it may
seem obvious, one has too remember that it is the result on how the algorithm is assessing
the variable. Others classes do not accept any low safety, meaning that if another class
is chosen or observed, It will have first passed the safety barrier. For acceptable or good
cars a medium safety will be accepted while for a very good car, safety must be high and
only high.

To summarize, Variable Importance in Random Uniform Forests goes from the higher
level to the lower one of granularity. At first, we get which variables are important,
nuanced by the weight of each class. Then, we find what make them influential, looking
their interactions and the choice made to choose a variable at first, considering all the
classes at once. Next step is to know where they get their influence, looking within each
class once fixed. At last, we get when and how a variable is mattering by looking the
partial dependence. All measures, except global variable importance, work on either the
training or the test set.

6.2 Regression

For regression, the process is almost the same except some graphics that taking into ac-
count the continuous values. For the sake of brevity, we will not show the R commands
or the plots that look like the ones in the classification example.
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We chose the Concrete compressive strength dataset freely available on the UCI repository
or in the randomUniformForest package. The dataset have 1030 rows and 9 attributes.
The purpose of the task is to evaluate the compressive strength of Concrete ("the most
important material in civil engineering"). The compressive strength depends on pre-
dictors, namely Cement, Blast Furnace Slag, Fly Ash, Water, Superplasticizer, Coarse
Aggregate, Fine Aggregate and Age. In the context of Variable Importance we want to
know what makes an efficient Concrete compressive strength.

i) We use the same analysis than in the classification case, retrieving a random subset
(the seed is the same), training the model with default parameters (except the number of
trees set to 500) then computing importance. The only difference with the classification
case resides in the object of assessment. We will evaluate the test set, rather than the
training one.
At first, we produce the global Variable Importance from which the whole analysis is
driven:

Figure 7: global Variable Importance for the Concrete compressive strength dataset
.

The relative influence given by the model is consistent with the one of GBM or Random
Forests, except that both rank Age at the first position. Since, in Random Uniform
Forests, cut-points are independent to responses this can be explained. Let us see how
the details matter.

ii) We call the interactions, getting all possible ones and the resulting Variable Im-
portance based on interactions. Recalling that we are assessing the test set, interactions
show the variables that have the most co-influence with others (and not the ones that
are the most important).
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Figure 8: Variable Importance based on interactions for the Concrete compressive strength
dataset.

We see Coarse Aggregate and Fine Aggregate as the variables that have the most
interactions with the other ones. In practice, it means that if one wants to maximize the
Concrete compressive strength these variables, while not being critical like Cement and
Age, might lead to some explanation, for example, if the Concrete compressive strength
is too low. Let us call the Partial Importance to assess that.

iii) Suppose that we want to know what leads to a high Concrete compressive strength
and what leads to a low one. In the training set the unconditional mean of the Concrete
compressive strength is 35.38 (Mpa, pressure unit) and its standard deviation is 16.86.
Let us state that a high Concrete compressive strength must be more than the average
+ one standard deviation; a low one less than the average minus one standard deviation.
We get :

Figure 9: Partial Importance for the Concrete compressive strength dataset.

Interactions and global Variable Importance are now (partially) explained. Coarse Ag-
gregate and Fine Aggregate are strongly involved in low Concrete compressive strength
while Age (in days) is the main ingredient of an increasing one. However, we still don’t
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know how to explain the whole range of the latter. Since all covariates are part of the
mixture to obtain Concrete one will need values to do the right choice.

iv) To get a point of view, we call the Variable Importance over each fixed variable,
forgetting the others and looking how the response (Concrete compressive strength) is
distributed over the fixed variable. Let us note that the results are the consequence of
the design of the Local Variable Importance so that, a fixed variable will see its results
to be dependent on what happened with the others when the whole forest was assessed.

Figure 10: Dependencies for the Concrete compressive strength dataset.

Above, each variable is represented (in alphabetic order) and each boxplot is the distri-
bution of the Concrete compressive strength over the variable. If, for example, we are
interested by high values we can simply look what variables lead to these values and
when to stop use the variables. More precisely, the plot above comes from the Partial
Importance measure, considering each variable at all positions and the whole range of
response values instead of a part. But, something is still missing. The distribution pro-
vides neither the direction nor the range of the potential predictor.

v) The last step of the analysis is, then, to assess dependent variable conjointly to any
predictor, over the whole range of both variables. Partial dependence is the tool that
provides these results. We can plot it for all the variables or for the ones that lead to the
better (or an increasing) compression strength.
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Figure 11: Partial Dependencies for the Concrete compressive strength dataset.

Partial dependencies show how the compressive strength is evolving, depending on a
fixed variable and for all the possible known values of others variables. According to
the definition given in section 5, the variable is fixed and we look in the whole forest
what predictions are involved with this variable. For Age, we get an optimal value that
maximizes the compressive strength, while it is an increasing function (on average) of the
Cement values. Note that for Age, we choose to represent it as discrete values. Partial
dependencies, in Random Uniform Forests, are designed to get the maximum number of
points by using an additional layer on how the variable is assessed. This leads to get an
highly flexible tool that provides interpolation, extrapolation (which requires to either
train the model with a new paradigm or to combine parametric modeling of the tails and
missing values imputation) and modeling dependencies (copula like model) for all the
variables, while restricted to a pair in the current implementation.

Let us illustrate dependencies (using interpolation) of Age and Cement :

Figure 12: Partial dependencies of Age and Cement in the Concrete compressive strength
dataset.

One can see how the dependence between the two variables lead, on average, to improve
the compressive strength. Taking the variables independently would not lead to the same
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improvements. Note that we removed outliers in order to get a consistent result. We
could visualize all dependencies by pair of variables, but if the purpose of the task (other
than prediction) is already known, one might focus on the most important variables to
get the right direction, while the others would serve to limit variability.

7 Discussion

We provided, in this article, many analytical and visualization tools. Both types lead
to a full analysis of Variable Importance. From what they are to how they act. We
did not show all the possibilities of the tools provided, but examples shown go far in
the analysis. To better understand Variable Importance one has to link it directly with
predictions in the case of Random Uniform Forests. If they are pretty accurate then one
may begin to have confidence to Variable Importance since all the measures are derived
from either predictions or the learning process. While necessary, it is still not sufficient
and the second strong guarantee relies on the stochastic nature of the model. One would,
so, expect to get random results, implying uniform distribution of all the measures. As
shown here, this does not happen, especially when learning many times the data, meaning
that the main effect of Variable Importance is to show how influence is close or far to a
model that would generate random influence. As statistical hypothesis are used in linear
and parametric models, randomness is acting as the same level in Random Uniform
Forests, separating noise to signal. Moreover, the main contribution has been to show
how ensemble models were able to provide more details that any simple linear model
with, at least, the same level of interpretation. Global variable importance was stated
to describe which variables have, globally, the most influence on lowering the prediction
error. Local variable importance describes what makes a variable to be an influential one,
exploiting its interactions with the others. This leads to Partial importance which shows
when a variable matters more. The last step of the Variable Importance analysis, partial
dependence, defines where and/or how each variable is linked with the responses.
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